Skip navigation

Carl A. Gunter

Carl A. Gunter is Professor in the Department of Computer and Information Science at the University of Pennsylvania.

Titles by This Author

Structures and Techniques

Semantics of Programming Languages exposes the basic motivations and philosophy underlying the applications of semantic techniques in computer science. It introduces the mathematical theory of programming languages with an emphasis on higher-order functions and type systems. Designed as a text for upper-level and graduate-level students, the mathematically sophisticated approach will also prove useful to professionals who want an easily referenced description of fundamental results and calculi.

Basic connections between computational behavior, denotational semantics, and the equational logic of functional programs are thoroughly and rigorously developed. Topics covered include models of types, operational semantics, category theory, domain theory, fixed point (denotational). semantics, full abstraction and other semantic correspondence criteria, types and evaluation, type checking and inference, parametric polymorphism, and subtyping. All topics are treated clearly and in depth, with complete proofs for the major results and numerous exercises.

Titles by This Editor

Types, Semantics, and Language Design

Although the theory of object-oriented programming languages is far from complete, this book brings together the most important contributions to its development to date, focusing in particular on how advances in type systems and semantic models can contribute to new language designs.

The fifteen chapters are divided into five parts: Objects and Subtypes, Type Inference, Coherence, Record Calculi, and Inheritance. The chapters are organized approximately in order of increasing complexity of the programming language constructs they consider - beginning with variations on Pascal- and Algol-like languages, developing the theory of illustrative record object models, and concluding with research directions for building a more comprehensive theory of object-oriented programming languages.

Part I discusses the similarities and differences between "objects" and algebraic-style abstract data types, and the fundamental concept of a subtype. Parts II-IV are concerned with the "record model" of object-oriented languages. Specifically, these chapters discuss static and dynamic semantics of languages with simple object models that include a type or class hierarchy but do not explicitly provide what is often called dynamic binding. Part V considers extensions and modifications to record object models, moving closer to the full complexity of practical object-oriented languages.