Skip navigation

Thomas Hofmann

Thomas Hofmann is a Director of Engineering at Google's Engineering Center in Zurich and Adjunct Associate Professor of Computer Science at Brown University.

Titles by This Editor

Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field.

Proceedings of the 2006 Conference

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. It draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists—interested in theoretical and applied aspects of modeling, simulating, and building neural-like or intelligent systems. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning, and applications.