Skip navigation
Hardcover | ISBN: 9780262182188 | 448 pp. | 7 x 9 in | July 2001

"“University Presses in Space” showcases a special sampling of the many works that university presses have published about space and space exploration."

Knowledge in Action

Logical Foundations for Specifying and Implementing Dynamical Systems


Modeling and implementing dynamical systems is a central problem in artificial intelligence, robotics, software agents, simulation, decision and control theory, and many other disciplines. In recent years, a new approach to representing such systems, grounded in mathematical logic, has been developed within the AI knowledge-representation community.

This book presents a comprehensive treatment of these ideas, basing its theoretical and implementation foundations on the situation calculus, a dialect of first-order logic. Within this framework, it develops many features of dynamical systems modeling, including time, processes, concurrency, exogenous events, reactivity, sensing and knowledge, probabilistic uncertainty, and decision theory. It also describes and implements a new family of high-level programming languages suitable for writing control programs for dynamical systems. Finally, it includes situation calculus specifications for a wide range of examples drawn from cognitive robotics, planning, simulation, databases, and decision theory, together with all the implementation code for these examples. This code is available on the book’s Web site.

About the Author

Raymond Reiter is Professor and Co-Director of the Cognitive Robotics Project in the Department of Computer Science at the University of Toronto.


"Human cognition sparkles brightest in the theatre of communication. This book takes you there the 'Edinburgh Way': that is, with a sound mix of psychology, logic, linguistics, computer science, and always-lively philosophical debate."--Johan van Benthem, University of Amsterdam

"This book is a masterful integration of several decades of work on first-order logic, situation calculus, logic programming, and semantics of time and knowledge. The result is a unified, well-thought-out, and systematic approach to dynamical systems that spans much of modern computer science and AI."--Johan van Benthem, University of Amsterdam

"This book describes a thoroughly developed logic- and situation-calculus-based system for problem solving and planning. Its emphasis on theory is especially important for the ambitious student who wants to look beyond immediate applications toward the goal of human-level artificial intelligence."--John McCarthy, Professor Emeritus of Computer Science, Stanford University

"This outstanding work should be on the shelf of anyone concerned with logical control of physical processes."--Anil Nerode, Goldwin Smith Professor of Mathematics, Cornell University