Skip navigation
Hardcover | $95.00 Text | £55.95 | ISBN: 9780262017473 | 1056 pp. | 7 x 9 in | 326 figures| September 2012
 
ebook | $95.00 Short | ISBN: 9780262306478 | 1056 pp. | 7 x 9 in | 326 figures| October 2012
 

Sustainable Energy, second edition

Choosing Among Options

Overview

Human survival depends on a continuing supply of energy, but the need for ever-increasing amounts of it poses a dilemma: How can we find energy sources that are sustainable and ways to convert and utilize energy that are more efficient? This widely used textbook is designed for advanced undergraduate and graduate students as well as others who have an interest in exploring energy resource options and technologies with a view toward achieving sustainability on local, national, and global scales. It clearly presents the tradeoffs and uncertainties inherent in evaluating and choosing sound energy portfolios and provides a framework for assessing policy solutions.

The second edition examines the broader aspects of energy use, including resource estimation, environmental effects, and economic evaluations; reviews the main energy sources of today and tomorrow, from fossil fuels and nuclear power to biomass, hydropower, and solar energy; treats energy carriers and energy storage, transmission, and distribution; addresses end-use patterns in the transportation, industrial, and building sectors; and considers synergistic complex systems. This new edition also offers updated statistical data and references; a new chapter on the complex interactions among energy, water, and land use; expanded coverage of renewable energy; and new color illustrations. Sustainable Energy addresses the challenges of making responsible energy choices for a more sustainable future.

Downloadable instructor resources available for this title: solution manual, problems, and file of figures in the book

About the Authors

Jefferson W. Tester is Croll Professor of Sustainable Energy Systems at Cornell University.

Elisabeth M. Drake is Emeritus Researcher at the MIT Energy Initiative.

Michael J. Driscoll is Professor Emeritus of Nuclear Science and Engineering at MIT.

Michael W. Golay is Professor of Nuclear Science and Engineering at MIT.

William A. Peters is Executive Director of the Institute for Soldier Nanotechnologies at MIT.

Table of Contents

  • Sustainable Energy
  • Sustainable Energy
  • Choosing Among Options
  • Second Edition
  • Jefferson W. Tester, Elisabeth M. Drake, Michael J. Driscoll, Michael W. Golay, and William A. Peters
  • The MIT Press
  • Cambridge, Massachusetts
  • London, England
  • ©
  • 2012
  • Massachusetts Institute of Technology
  • All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.
  • MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special_sales@mitpress.mit.edu or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142.
  • This book was set in Times Roman by Toppan Best-set Premedia Limited. Printed and bound in the United States of America.
  • Library of Congress Cataloging-in-Publication Data
  • Sustainable energy : choosing among options / Jefferson W. Tester...[et al.]. — 2nd ed.
  • p. cm.
  • Includes bibliographical references and index.
  • ISBN 978-0-262-01747-3 (hardcover : alk. paper) 1. Renewable energy sources. I. Tester, Jefferson W.
  • TJ808.S85 2012
  • 333.79'4—dc23
  • 2011049223
  • 10 9 8 7 6 5 4 3 2 1
  • Contents
  • Preface to the First Edition
  • xix
  • Acknowledgments from the First Edition
  • xxiii
  • Preface to the Second Edition
  • xxvii
  • Acknowledgments for the Second Edition
  • xxix
  • 1 Sustainable Energy: The Engine of Sustainable Development
  • 1
  • 1.1 Sustainable Energy: The Engine of Sustainable Development
  • 2
  • 1.2 The Energy Portfolio
  • 11
  • 1.3 Defining Energy: Scientific and Engineering Foundations
  • 14
  • 1.4 Aspects of Energy Production and Consumption
  • 20
  • 1.5 National and Global Patterns of Energy Supply and Utilization
  • 26
  • 1.6 Environmental Effects of Energy: Gaining Understanding
  • 30
  • 1.7 Confronting the Energy-Prosperity-Environmental Dilemma: Sustainability and Alternative Proposals
  • 39
  • 1.8 Mathematical Representations of Sustainability
  • 44
  • 1.9 The Rest of This Book
  • 46
  • Problems
  • 47
  • References
  • 48
  • 2 Estimation and Evaluation of Energy Resources
  • 51
  • 2.1 Units of Measurement: Energy and Power
  • 52
  • 2.2 Comparison of Different Forms of Energy
  • 56
  • 2.3 The Energy Life Cycle
  • 60
  • 2.4 Estimation and Valuation of Fossil Mineral Fuels, Especially Petroleum
  • 70
  • 2.4.1 Asking the right questions and avoiding the unanswerable ones
  • 70
  • 2.4.2 Perspectives from mineral geology
  • 71
  • 2.4.3 Two interpretations of hydrocarbon fuel economics
  • 72
  • 2.4.4 Categories of reserves
  • 80
  • 2.4.5 Forecasting mineral fuel prices and supplies
  • 82
  • 2.4.6 Geopolitical factors and energy supply “crises”
  • 87
  • 2.5 Estimation and Valuation of Nuclear Fuel Resources
  • 90
  • 2.6 Estimation and Valuation of Renewable Energy Resources
  • 92
  • 2.6.1 Introduction and historical notes
  • 92
  • 2.6.2 Renewable energy resource assessment
  • 94
  • 2.6.3 Environmental impacts
  • 96
  • 2.6.4 Technology development and deployment
  • 97
  • 2.6.5 The importance of storage
  • 98
  • 2.6.6 Connecting renewables to hydrogen
  • 98
  • 2.6.7 The future of renewable energy
  • 99
  • 2.6.8 Additional resources
  • 100
  • 2.7 Lessons for Sustainable Development
  • 100
  • 2.8 Summary and Conclusions
  • 101
  • Problems
  • 102
  • References
  • 103
  • 3 Technical Performance: Allowability, Efficiency, Production Rates
  • 107
  • 3.1 The Relation of Technical Performance to Sustainability
  • 108
  • 3.2 An Introduction to Methods of Thermodynamic Analysis
  • 110
  • 3.2.1 Allowability, efficiency, and the Second Law
  • 110
  • 3.2.2 More about entropy
  • 112
  • 3.2.3 Analysis of ideal (Carnot) heat engines
  • 118
  • 3.2.4 Analysis of real-world (irreversible) heat engines
  • 122
  • 3.3 The Importance of Rate Processes in Energy Conversion
  • 136
  • 3.4 Chemical Rate Processes
  • 138
  • 3.5 The Physical Transport of Heat
  • 142
  • 3.5.1 Foundations for quantitative analysis
  • 142
  • 3.5.2 Thermal conduction
  • 144
  • 3.5.3 Convective heat transfer
  • 146
  • 3.5.4 Radiative heat transmission
  • 147
  • 3.5.5 Heat transfer by tandem mechanisms
  • 150
  • 3.6 Energy Requirements for Gas Separation Processes
  • 152
  • 3.7 Use and Abuse of Time Scales
  • 154
  • 3.8 Energy Resources and Energy Conversion: Fertile Common Ground
  • 155
  • Problems
  • 156
  • References
  • 157
  • 4 Local, Regional, and Global Environmental Effects of Energy
  • 161
  • 4.1 How Energy Systems Interact with the Environment
  • 162
  • 4.1.1 Known and potential environmental threats
  • 162
  • 4.1.2 Origin of harmful agents
  • 165
  • 4.1.3 Length and time scales for environmental impacts
  • 168
  • 4.2 Adverse Environmental Effects over Local and Regional Length Scales
  • 173
  • 4.2.1 Ambient air pollution
  • 173
  • 4.2.2 Adulteration of soil, water, and indoor air
  • 181
  • 4.2.3 Transport and transformation of air, ground, and water contamination
  • 183
  • 4.3 Global Climate Change: Environmental Consequences over Planetary Length Scales
  • 184
  • 4.3.1 Introduction
  • 184
  • 4.3.2 Basic science of the greenhouse effect
  • 187
  • 4.3.3 Energy and the greenhouse effect
  • 194
  • 4.3.4 Greenhouse consequences: Consensus, unknowns, misconceptions
  • 199
  • 4.3.5 Technological and policy response strategies: Evolutionary and revolutionary
  • 207
  • 4.4 Attribution of Environmental Damage to Energy Utilization
  • 216
  • 4.4.1 Diagnosing receptor jeopardy and injury
  • 217
  • 4.4.2 Source identification
  • 222
  • 4.4.3 Risk and uncertainty
  • 223
  • 4.4.4 Simulation modeling to estimate environmental externality costs
  • 224
  • 4.5 Methods of Environmental Protection
  • 227
  • 4.5.1 Energy and the environment as an ensemble of coupled complex systems
  • 227
  • 4.5.2 Earth system ecology as a working paradigm
  • 228
  • 4.5.3 Public policy instruments
  • 230
  • 4.5.4 Technological remedies
  • 232
  • 4.6 Environmental Benefits of Energy
  • 233
  • 4.6.1 Pollution prevention and environmental restoration
  • 233
  • 4.6.2 Social and economic foundations for environmental stewardship
  • 233
  • 4.7 Implications for Sustainable Energy
  • 233
  • 4.7.1 Environmental footprints as sustainability metrics
  • 233
  • 4.7.2 The unusual challenge of global climate change
  • 234
  • Appendix: Lessons from SO
  • 2
  • Emissions Trading 235
  • Problems
  • 239
  • References
  • 242
  • 5 Project Economic Evaluation
  • 249
  • 5.1 Introduction
  • 250
  • 5.2 Time Value of Money Mechanics
  • 252
  • 5.2.1 Basic aspects
  • 252
  • 5.2.2 Application to a typical cash-flow scenario
  • 255
  • 5.2.3 Derivation of relations
  • 258
  • 5.2.4 Pitfalls, errors, and ambiguities
  • 258
  • 5.3 Current- versus Constant-Dollar Comparisons
  • 262
  • 5.4 Simple Payback
  • 266
  • 5.5 Economy of Scale and Learning Curve
  • 267
  • 5.6 Allowing for Uncertainty
  • 271
  • 5.6.1 Overview
  • 271
  • 5.6.2 Analytic uncertainty propagation
  • 271
  • 5.6.3 The Monte Carlo method
  • 272
  • 5.6.4 Decision tree method
  • 273
  • 5.7 Accounting for Externalities
  • 273
  • 5.8 Energy Accounting
  • 280
  • 5.9 Modeling beyond the Project Level
  • 282
  • 5.10 Summary
  • 283
  • Appendix: Derivation of Relations for Levelized Cost
  • 285
  • Problems
  • 286
  • References
  • 290
  • Websites of Interest
  • 292
  • 6 Energy Systems and Sustainability Metrics
  • 293
  • 6.1 Introduction and Historical Notes
  • 293
  • 6.2 Energy from a Systems Perspective
  • 298
  • 6.3 Systems Analysis Approaches
  • 306
  • 6.3.1 Life-cycle analysis
  • 309
  • 6.3.2 Simulation models
  • 312
  • 6.3.3 Risk-based models
  • 313
  • 6.4 Measures of Sustainability
  • 317
  • 6.4.1 General indicators of sustainability
  • 318
  • 6.4.2 Categories of indicators
  • 320
  • 6.5 Drivers of Societal Change
  • 322
  • 6.6 Some General Principles of Sustainable Development
  • 325
  • Problems
  • 328
  • References
  • 329
  • Websites of Interest
  • 332
  • 7 Energy, Water, and Land Use
  • 333
  • 7.1 Linkages between Energy, Water, and Land Use
  • 333
  • 7.2 Major Systems, Interactions, and Trends
  • 336
  • 7.3 Major Planetary Cycles
  • 339
  • 7.3.1 Water cycle
  • 340
  • 7.3.2 Carbon cycle
  • 343
  • 7.3.3 Nitrogen cycle
  • 345
  • 7.3.4 Climate cycles
  • 347
  • 7.4 Overview of Land-Use Issues
  • 351
  • 7.4.1 Land-use patterns
  • 351
  • 7.4.2 Human development
  • 351
  • 7.4.3 Agriculture and forestry
  • 354
  • 7.4.4 Monitoring land-use changes
  • 357
  • 7.5 Overview of Ocean-Use Issues
  • 360
  • 7.5.1 Physical characteristics of the oceans
  • 360
  • 7.5.2 Food chains
  • 363
  • 7.5.3 Fisheries and aquaculture
  • 365
  • 7.5.4 Monitoring ocean changes
  • 366
  • 7.6 Implications for Sustainable Energy
  • 366
  • Problems
  • 368
  • References
  • 369
  • Websites of Interest
  • 371
  • 8 Fossil Fuels and Fossil Energy
  • 373
  • 8.1 Introduction
  • 374
  • 8.1.1 Definition and types of fossil fuels
  • 374
  • 8.1.2 Historical and current contributions of fossil fuels to human progress
  • 377
  • 8.1.3 Sustainability: Challenges and opportunities
  • 380
  • 8.2 The Fossil-Fuel Resource Base
  • 381
  • 8.2.1 How long will fossil fuels last?
  • 381
  • 8.2.2 “Unconventional” naturally occurring fossil fuels
  • 382
  • 8.2.3 Fossil resources and sustainability
  • 384
  • 8.3 Harvesting Energy and Energy Products from Fossil Fuels
  • 384
  • 8.3.1 Exploration, discovery, and extraction of fuels
  • 384
  • 8.3.2 Fuel storage and transportation
  • 384
  • 8.3.3 Fuel conversion
  • 385
  • 8.3.4 Fuel combustion
  • 396
  • 8.3.5 Direct generation of electricity: Fuel cells
  • 402
  • 8.3.6 Manufacture of chemicals and other products
  • 409
  • 8.4 Environmental Impacts
  • 409
  • 8.4.1 Pollutant sources and remedies: The fuel itself
  • 409
  • 8.4.2 Pollutant sources and remedies: Combustion pathologies
  • 412
  • 8.4.3 Pollutant sources and remedies: Carbon management
  • 414
  • 8.5 Geopolitical and Sociological Factors
  • 418
  • 8.5.1 Globalization of fossil energy sources
  • 418
  • 8.5.2 Equitable access, revenue scaffolds,
  • American Graffiti
  • 420
  • 8.6 Economics of Fossil Energy
  • 423
  • 8.7 Some Principles for Evaluating Fossil and Other Energy Technology Options
  • 429
  • 8.8 Emerging Technologies
  • 435
  • 8.9 Conclusion: Why Are Fossil Fuels Important to Sustainable Energy?
  • 442
  • Problems
  • 443
  • References
  • 443
  • 9 Nuclear Power
  • 447
  • 9.1 Nuclear History
  • 448
  • 9.2 Physics
  • 450
  • 9.3 Nuclear Reactors
  • 451
  • 9.4 Burning and Breeding
  • 454
  • 9.5 Nuclear Power Economics
  • 455
  • 9.6 Nuclear Power Plant Accidents
  • 457
  • 9.7 Reactor Safety
  • 464
  • 9.8 Nuclear Reactor Technologies
  • 466
  • 9.8.1 Light-water reactors (LWR)
  • 467
  • 9.8.2 RBMK reactors
  • 470
  • 9.8.3 Heavy-water-cooled technologies
  • 474
  • 9.8.4 Gas-cooled reactor technologies
  • 474
  • 9.8.5 Liquid-metal reactor technologies
  • 477
  • 9.9 Actinide Burning
  • 479
  • 9.10 Advanced Reactors
  • 481
  • 9.11 Nuclear Power Fuel Resources
  • 481
  • 9.12 Fuel Cycle
  • 482
  • 9.12.1 Uranium mining
  • 483
  • 9.12.2 Uranium milling
  • 484
  • 9.12.3 Conversion
  • 484
  • 9.12.4 Enrichment
  • 485
  • 9.12.5 Fuel fabrication
  • 486
  • 9.12.6 Spent fuel
  • 486
  • 9.12.7 Reprocessing
  • 486
  • 9.12.8 High-level wastes (HLW) disposal
  • 488
  • 9.13 Fusion Energy
  • 492
  • 9.13.1 Introduction
  • 492
  • 9.13.2 Why is fusion more difficult than fission?
  • 493
  • 9.13.3 Magnetic fusion energy
  • 495
  • 9.13.4 Inertial fusion energy
  • 496
  • 9.13.5 Prospects for the future
  • 497
  • 9.14 Future Prospects for Nuclear Power
  • 499
  • Problems
  • 500
  • References
  • 500
  • Additional Resources
  • 502
  • 10 Biomass Energy
  • 503
  • 10.1 Characterizing the Biomass Resource
  • 504
  • 10.1.1 Defining biomass
  • 504
  • 10.1.2 Renewability indices and biomass resources
  • 507
  • 10.2 Biomass Relevance to Energy Production
  • 510
  • 10.2.1 Utilization options
  • 510
  • 10.2.2 Advantages and disadvantages
  • 512
  • 10.2.3 More on resources
  • 514
  • 10.3 Chemical and Physical Properties Relevant to Energy Production
  • 517
  • 10.4 Biofuels Production: Policy Incentives
  • 520
  • 10.5 Thermal Conversion of Biomass
  • 521
  • 10.5.1 Biomass to electricity
  • 521
  • 10.5.2 Biomass to fuels
  • 526
  • 10.6 Bioconversion
  • 528
  • 10.6.1 Introduction
  • 528
  • 10.6.2 Biogas
  • 528
  • 10.6.3 Fermentation ethanol from corn and cellulosic biomass
  • 529
  • 10.6.4 Synfuels from biomass gasification
  • 532
  • 10.7 Environmental Issues
  • 532
  • 10.8 Economics
  • 535
  • 10.9 Research and Development Opportunities
  • 536
  • 10.10 Disruptive Technology
  • 537
  • 10.11 Summary
  • 540
  • Problems
  • 540
  • References
  • 541
  • Websites of Interest
  • 544
  • 11 Geothermal Energy
  • 545
  • 11.1 Characterization of Geothermal Resource Types
  • 546
  • 11.1.1 Definition in general
  • 546
  • 11.1.2 Natural hydrothermal systems
  • 550
  • 11.1.3 Geopressured systems
  • 552
  • 11.1.4 Hot dry rock (enhanced geothermal systems)
  • 553
  • 11.1.5 Magma
  • 554
  • 11.1.6 Ultra-low-grade systems
  • 555
  • 11.1.7 Markets for geothermal energy
  • 555
  • 11.2 Geothermal Resource Size and Distribution
  • 558
  • 11.2.1 Overall framework and terminology
  • 558
  • 11.2.2 Quality issues
  • 559
  • 11.2.3 Resource base and reserve estimates
  • 560
  • 11.3 Practical Operation and Equipment for Recovering Energy
  • 563
  • 11.3.1 Drilling and field development
  • 563
  • 11.3.2 Reservoir fluid production
  • 565
  • 11.3.3 Nonelectric, direct-heat utilization
  • 569
  • 11.3.4 Electric power generation
  • 573
  • 11.3.5 Equipment
  • 577
  • 11.3.6 Power-cycle performance
  • 581
  • 11.4 Sustainability Attributes
  • 583
  • 11.4.1 Reservoir lifetime issues
  • 583
  • 11.4.2 Environmental impacts
  • 585
  • 11.4.3 Dispatchable heat and power delivery
  • 586
  • 11.4.4 Suitability for developing countries
  • 587
  • 11.4.5 Potential for CO
  • 2
  • reduction and pollution prevention 587
  • 11.5 Status of Geothermal Technology Today
  • 588
  • 11.5.1 Hydrothermal
  • 588
  • 11.5.2 Advanced systems
  • 592
  • 11.6 Competing in Today’s Energy Markets
  • 604
  • 11.7 Research and Development Advances Needed
  • 607
  • 11.8 Potential for the Long Term
  • 609
  • Problems
  • 610
  • References
  • 612
  • Websites of Interest
  • 618
  • 12 Hydropower
  • 619
  • 12.1 Overview of Hydropower
  • 619
  • 12.2 Hydropower Resource Assessment
  • 622
  • 12.3 Basic Energy Conversion Principles
  • 625
  • 12.4 Conversion Equipment and Civil Engineering Operations
  • 628
  • 12.4.1 Civil engineering aspects of dam construction and waterway management
  • 628
  • 12.4.2 Turbines as energy converters
  • 629
  • 12.5 Sustainability Attributes
  • 632
  • 12.6 Status of Hydropower Technology Today
  • 636
  • 12.6.1 Economic issues
  • 636
  • 12.6.2 Potential for growth
  • 637
  • 12.6.3 Advanced technology needs
  • 638
  • Problems
  • 640
  • References
  • 641
  • Websites of Interest
  • 643
  • 13 Solar Energy
  • 645
  • 13.1 General Characteristics of Solar Energy
  • 646
  • 13.2 Resource Assessment
  • 647
  • 13.3 Passive and Active Solar Thermal Energy for Buildings
  • 656
  • 13.3.1 Motivation and general issues
  • 656
  • 13.3.2 Passive systems
  • 658
  • 13.3.3 Active systems
  • 660
  • 13.3.4 Economic and policy issues
  • 663
  • 13.4 Solar Thermal Electric Systems: Concentrating Solar Power (CSP)
  • 665
  • 13.4.1 Fundamentals and options
  • 665
  • 13.4.2 Power tower: Central receiver systems
  • 666
  • 13.4.3 Parabolic troughs
  • 668
  • 13.4.4 Dish-engine systems
  • 672
  • 13.4.5 Current status and future potential of CSP
  • 674
  • 13.5 Solar Photovoltaic (PV) Systems
  • 677
  • 13.5.1 Solid-state physical chemistry fundamentals
  • 678
  • 13.5.2 Performance limits and design options
  • 680
  • 13.5.3 Silica-based systems (crystalline and amorphous)
  • 683
  • 13.5.4 Copper indium diselenide (CIS)
  • 684
  • 13.5.5 Cadmium telluride (CdTe)
  • 686
  • 13.5.6 Current status and future potential of PV
  • 686
  • 13.6 Sustainability Attributes
  • 689
  • 13.7 Summary and Prognosis
  • 691
  • Problems
  • 692
  • References
  • 694
  • Websites of Interest
  • 696
  • 14 Ocean Wave, Tide, Current, and Thermal Energy Conversion
  • 697
  • 14.1 Introduction
  • 697
  • 14.2 Energy from the Tides and Currents
  • 700
  • 14.2.1 Impoundment-type tidal
  • 700
  • 14.2.2 Current-powered systems, tidal and otherwise
  • 704
  • 14.3 Energy from the Waves: Overview
  • 704
  • 14.4 Energy from Temperature Differences
  • 708
  • 14.4.1 Overview
  • 708
  • 14.4.2 Performance limits
  • 708
  • 14.4.3 OTEC technology
  • 711
  • 14.5 Economic Prospects
  • 712
  • 14.6 Environmental and Sustainability Considerations
  • 714
  • 14.7 The Ocean as an Externalities Sink
  • 715
  • 14.8 Current Status and Future Prospects
  • 715
  • Appendix: Constants and Conversion Factors
  • 716
  • Problems
  • 717
  • References
  • 718
  • Websites of Interest
  • 720
  • 15 Wind Energy
  • 721
  • 15.1 Introduction and Historical Notes
  • 722
  • 15.1.1 Introduction
  • 722
  • 15.1.2 Historical notes
  • 723
  • 15.2 Wind Resources
  • 726
  • 15.2.1 Wind quality
  • 728
  • 15.2.2 Variation of wind speed with elevation
  • 729
  • 15.2.3 Air density
  • 732
  • 15.2.4 Maximum wind-turbine efficiency: The Betz limit
  • 733
  • 15.3 Wind Machinery and Generating Systems
  • 736
  • 15.3.1 Overview
  • 736
  • 15.3.2 Rotor blade assembly
  • 739
  • 15.3.3 Tower
  • 739
  • 15.3.4 Nacelle components
  • 740
  • 15.3.5 Balance-of-station subsystems
  • 740
  • 15.3.6 System design challenges
  • 740
  • 15.4 Wind-Turbine Rating
  • 741
  • 15.5 Wind-Power Economics
  • 742
  • 15.6 Measures of Sustainability
  • 745
  • 15.6.1 Net energy analysis
  • 745
  • 15.6.2 Cost of externalities
  • 746
  • 15.6.3 Environmental impact of wind power
  • 746
  • 15.7 Current Status and Future Prospects
  • 748
  • Appendix: Conversion Factors Relevant to Wind Power
  • 751
  • Problems
  • 752
  • References
  • 754
  • Websites of Interest
  • 755
  • 16 Energy Carriers: Electric Power, Hydrogen Fuel, Other?
  • 757
  • 16.1 Introduction and Historical Perspectives
  • 757
  • 16.1.1 Growth of the electric generation industry
  • 760
  • 16.1.2 Life-cycle tracking of electric energy uses
  • 766
  • 16.1.3 Overall efficiency of primary energy usage
  • 768
  • 16.2 Electricity as an Energy Carrier
  • 770
  • 16.2.1 Electric energy
  • 770
  • 16.2.2 Centralized energy generation
  • 771
  • 16.2.3 Electric power generation
  • 772
  • 16.2.4 Environmental effects of electricity production
  • 774
  • 16.2.5 Siting requirements for power plants
  • 777
  • 16.2.6 Electricity economics
  • 780
  • 16.3 Hydrogen as an Energy Carrier
  • 782
  • 16.3.1 Hydrogen production
  • 784
  • 16.3.2 Hydrogen safety
  • 789
  • 16.3.3 Hydrogen storage and distribution
  • 791
  • 16.3.4 Future opportunities
  • 792
  • 16.4 Sustainability Issues
  • 792
  • Problems
  • 796
  • References
  • 797
  • Websites of Interest
  • 798
  • 17 Energy Management: Storage, Transportation, and Distribution
  • 799
  • 17.1 Overview of Energy Management Systems
  • 800
  • 17.2 Connected Efficiencies and Energy Chains
  • 805
  • 17.3 Modes of Energy Storage
  • 808
  • 17.3.1 General characteristics
  • 808
  • 17.3.2 Energy storage technologies
  • 812
  • 17.4 Energy Transmission
  • 827
  • 17.4.1 General characteristics of energy transmission systems
  • 827
  • 17.4.2 Oil transport
  • 828
  • 17.4.3 Natural gas transport
  • 829
  • 17.4.4 Coal transport
  • 833
  • 17.4.5 Electric power transmission
  • 833
  • 17.5 Energy Distribution Systems
  • 837
  • 17.5.1 General characteristics of central versus distributed systems
  • 837
  • 17.5.2 Combined heat and power opportunities
  • 842
  • 17.5.3 Applications to renewable energy systems and hybrids
  • 842
  • 17.6 Ways of Organizing the Electric Economy
  • 842
  • 17.6.1 Demand-side management (DSM) and distributed generation
  • 843
  • 17.6.2 Electricity transmission and distribution and economic deregulation
  • 844
  • 17.6.3 An example of electric industry planning using multiattribute assessment tools
  • 845
  • 17.6.4 The need for more dynamic utilization of transmission and distribution capacity
  • 849
  • 17.7 Energy Market Impacts on Electricity Generation Options
  • 851
  • 17.8 Sustainability Attributes
  • 854
  • 17.8.1 Improved resource utilization
  • 854
  • 17.8.2 Environmental, safety, and health concerns
  • 854
  • 17.8.3 Economic and operational attributes
  • 855
  • 17.9 Opportunities for Advancement of Sustainable Energy Infrastructures
  • 856
  • Problems
  • 857
  • References
  • 860
  • Websites of Interest
  • 862
  • 18 Transportation Services
  • 865
  • 18.1 Introduction and Historical Perspectives
  • 865
  • 18.2 Elements of the Transportation System
  • 874
  • 18.3 Transportation Fuels and the Fuel Cycle
  • 877
  • 18.4 Personal Vehicles
  • 882
  • 18.4.1 Historical perspectives
  • 882
  • 18.4.2 Looking forward
  • 885
  • 18.5 Life-Cycle Comparison of Vehicle Alternatives for Passenger Road Transport
  • 887
  • 18.6 Freight Vehicles
  • 894
  • 18.7 Public Transit, Interurban, and Intercontinental Transport
  • 896
  • 18.8 Motorization Trends
  • 899
  • 18.9 Sustainability Issues
  • 901
  • Problems
  • 903
  • References
  • 903
  • Websites of Interest
  • 905
  • 19 Industrial Energy Usage
  • 907
  • 19.1 Introduction and Historical Perspectives
  • 907
  • 19.2 Life-Cycle Analysis and Design for Sustainability
  • 911
  • 19.3 Metals Industries
  • 914
  • 19.4 Cement and Lime Industries
  • 916
  • 19.5 Chemical Industries
  • 917
  • 19.6 Forest Products and Agriculture
  • 919
  • 19.7 Waste Management Industries
  • 920
  • 19.8 Sustainability Issues
  • 921
  • Problems
  • 925
  • References
  • 925
  • Websites of Interest
  • 926
  • 20 Commercial and Residential Buildings
  • 927
  • 20.1 Introduction and Historical Perspectives
  • 927
  • 20.2 Life-Cycle Analysis
  • 931
  • 20.3 Residential Buildings
  • 936
  • 20.3.1 Design
  • 936
  • 20.3.2 Efficiency
  • 940
  • 20.4 Commercial Buildings
  • 941
  • 20.4.1 Design
  • 941
  • 20.4.2 Efficiency
  • 945
  • 20.5 Indoor Air Quality
  • 947
  • 20.6 Sustainability Issues
  • 948
  • Problems
  • 950
  • References
  • 950
  • Websites of Interest
  • 951
  • 21 Synergistic Complex Systems
  • 953
  • 21.1 Introduction and Historical Notes
  • 954
  • 21.2 The Complex Systems View
  • 957
  • 21.2.1 Expert panels
  • 958
  • 21.2.2 Partial informational models
  • 959
  • 21.2.3 Decision analysis techniques
  • 964
  • 21.2.4 Negotiation
  • 967
  • 21.2.5 How are decisions really made?
  • 968
  • 21.3 Some Case Studies
  • 969
  • 21.3.1
  • Beyond the Limits
  • (Meadows, Meadows, and Randers, 1992) 970
  • 21.3.2
  • Which World?
  • (Hammond, 1998) 975
  • 21.3.3 MIT Joint Program on the Science and Policy of Global Change: Integrated Global System Model
  • 976
  • 21.3.4 C-ROADS climate policy model
  • 979
  • 21.4 Transitional Pathways
  • 980
  • 21.5 The Challenge to Society
  • 989
  • Problems
  • 992
  • References
  • 993
  • Websites of Interest
  • 995
  • 22 Choosing among Options
  • 997
  • Conversion Factors
  • 1001
  • List of Acronyms
  • 1005
  • Index
  • 1011