Skip navigation

Computers & Human Interaction

Insight through Inquiry

Interactive visualization is emerging as a vibrant new form of communication, providing compelling presentations that allow viewers to interact directly with information in order to construct their own understandings of it. Building on a long tradition of print-based information visualization, interactive visualization utilizes the technological capabilities of computers, the Internet, and computer graphics to marshal multifaceted information in the service of making a point visually. This book offers an introduction to the field, presenting a framework for exploring historical, theoretical, and practical issues. It is not a “how-to” book tied to specific and soon-to-be-outdated software tools, but a guide to the concepts that are central to building interactive visualization projects whatever their ultimate form.

The framework the book presents (known as the ASSERT model, developed by the author), allows the reader to explore the process of interactive visualization in terms of choosing good questions to ask; finding appropriate data for answering them; structuring that information; exploring and analyzing the data; representing the data visually; and telling a story using the data. Interactive visualization draws on many disciplines to inform the final representation, and the book reflects this, covering basic principles of inquiry, data structuring, information design, statistics, cognitive theory, usability, working with spreadsheets, the Internet, and storytelling.

The mobile device is changing the ways we interact with each other and with the world. The mobile experience is distinct from the desktop or laptop experience; mobile apps require a significantly different design philosophy as well as design methods that reflect the unique experience of computing in the world. This book presents an approach to designing mobile media that takes advantage of the Internet-connected, context-aware, and media-sharing capabilities of mobile devices. It introduces tools that can be used at every stage of building a mobile application, from concept creation to commercialization, as well as real-world examples from industry and academia.

The methods outlined apply user-centered design processes to mobile devices in a way that makes these methods relevant to the mobile experience--which involves the use of systems in the complex spatial and social world rather than at a desk. The book shows how each project begins with generative research into the practices and desires of a diverse set of potential users, which grounds research and design in the real world. It then describes methods for rapid prototyping, usability evaluation, field testing, and scaling up solutions in order to bring a product to market. Building Mobile Experiences grew out of an MIT course in communicating with mobile technology; it is appropriate for classroom use and as a reference for mobile app designers.

Principles of Interaction Programming

Interactive systems and devices, from mobile phones to office copiers, do not fulfill their potential for a wide variety of reasons—not all of them technical. Press On shows that we can design better interactive systems and devices if we draw on sound computer science principles. It uses state machines and graph theory as a powerful and insightful way to analyze and design better interfaces and examines specific designs and creative solutions to design problems. Programmers—who have the technical knowledge that designers and users often lack—can be more creative and more central to interaction design than we might think. Sound programming concepts improve device design.

Press On provides the insights, concepts and programming tools to improve usability. Knowing the computer science is fundamental, but Press On also shows how essential it is to have the right approaches to manage the design of systems that people use. Particularly for complex systems, the social, psychological and ethical concerns—the wider design issues—are crucial, and these are covered in depth.

Press On highlights key principles throughout the text and provides cross-topic linkages between chapters and suggestions for further reading. Additional material, including all the program code used in the book, is available on an interactive web site. Press On is an essential textbook and reference for computer science students, programmers, and anyone interested in the design of interactive technologies.

Activity Theory and Interaction Design

Activity theory holds that the human mind is the product of our interaction with people and artifacts in the context of everyday activity. Acting with Technology makes the case for activity theory as a basis for understanding our relationship with technology. Victor Kaptelinin and Bonnie Nardi describe activity theory's principles, history, relationship to other theoretical approaches, and application to the analysis and design of technologies. The book provides the first systematic entry-level introduction to the major principles of activity theory. It describes the accumulating body of work in interaction design informed by activity theory, drawing on work from an international community of scholars and designers. Kaptelinin and Nardi examine the notion of the object of activity, describe its use in an empirical study, and discuss key debates in the development of activity theory. Finally, they outline current and future issues in activity theory, providing a comparative analysis of the theory and its leading theoretical competitors within interaction design: distributed cognition, actor-network theory, and phenomenologically inspired approaches.

Game Design Fundamentals

As pop culture, games are as important as film or television—but game design has yet to develop a theoretical framework or critical vocabulary. In Rules of Play Katie Salen and Eric Zimmerman present a much-needed primer for this emerging field. They offer a unified model for looking at all kinds of games, from board games and sports to computer and video games. As active participants in game culture, the authors have written Rules of Play as a catalyst for innovation, filled with new concepts, strategies, and methodologies for creating and understanding games .Building an aesthetics of interactive systems, Salen and Zimmerman define core concepts like "play," "design," and "interactivity." They look at games through a series of eighteen "game design schemas," or conceptual frameworks, including games as systems of emergence and information, as contexts for social play, as a storytelling medium, and as sites of cultural resistance.Written for game scholars, game developers, and interactive designers, Rules of Play is a textbook, reference book, and theoretical guide. It is the first comprehensive attempt to establish a solid theoretical framework for the emerging discipline of game design.


Computers and Thought showcases the work of the scientists who not only defined the field of Artificial Intelligence, but who are responsible for having developed it into what it is today. Originally published in 1963, this collection includes twenty classic papers by such pioneers as A. M. Turing and Marvin Minsky who were behind the pivotal advances in artificially simulating human thought processes with computers.

Among the now hard-to-find articles are reports of computer programs that play chess and checkers, prove theorems in logic and geometry, solve problems in calculus, balance assembly lines, recognize visual temporal patterns, and communicate in natural language. The reports of simulation of cognitive processes include computer models of human behavior in logic problems, deciding on common stock portfolios, and carrying out social interaction. Models of verbal learning behavior, predictive behavior in two-choice experiments, and concept formation are also included.

Articles by: Paul Armer. Carol Chomsky. Geoffrey P. E. Clarkson. Edward A. Feigenbaum. Julian Feldman. H. Gelernter. Bert F. Green, Jr. John T. Gullahorn. Jeanne E. Gullahorn. J. R. Hansen. Carl I. Hovland. Earl B. Hunt. Kenneth Laughery. Robert K. Lindsay. D. W. Loveland. Marvin Minsky. Ulric Neisser. Allen Newell. A. L. Samuel. Oliver G. Selfridge. J. C. Shaw. Herbert A. Simon. James R. Slagle. Fred M. Tonge. A. M. Turing. Leonard Uhr. Charles Vossler. Alice K. Wolf.


Cautionary Tales and Ethical Dilemmas in Computing

For anyone interested in the issues arising from computer malfunctions and, more perniciously, from misuse, this new edition of Computer Ethics is right on the mark. Widely acclaimed for its readability and its balanced and authoritative coverage, Computer Ethics has been thoroughly revised and updated with new anecdotes, new revelations, and lively discussion of the ethical, social, and professional issues arising from the computer revolution, such as computer crime, software theft, hacking, viruses, and the invasion of privacy.

An entirely rewritten first chapter is followed by expanded chapters that contain compelling new case studies and analyses. A new final section contains 10 hypothetical scenarios for group discussion. Copies of the ACM Code of Ethics and the ACM-IEEE Computing Curricula are included in the appendixes.

Tom Forester is Senior Lecturer in the School of Computing and Information Technology at Griffith University, Queensland, Australia, and is editor or author of seven books on the social aspects of computers. Perry Morrison lectures in psychology at the National University of Singapore.

This book presents a coherent approach to the fast moving field of machine vision, using a consistent notation based on a detailed understanding of the image formation process. It covers even the most recent research and will provide a useful and current reference for professionals working in the fields of machine vision, image processing, and pattern recognition.An outgrowth of the author's course at MIT, Robot Vision presents a solid framework for understanding existing work and planning future research. Its coverage includes a great deal of material that important to engineers applying machine vision methods in the real world. The chapters on binary image processing, for example, help explain and suggest how to improve the many commercial devices now available. And the material on photometric stereo and the extended Gaussian image points the way to what may be the next thrust in commercialization of the results in this area. The many exercises complement and extend the material in the text, and an extensive bibliography will serve as a useful guide to current research.Contents: Image Formation and Image Sensing. Binary Images: Geometrical Properties; Topological Properties. Regions and Image Segmentation. Image Processing: Continuous Images; Discrete Images. Edges and Edge Finding. Lightness and Color. Reflectance Map: Photometric Stereo Reflectance Map; Shape from Shading. Motion Field and Optical Flow. Photogrammetry and Stereo. Pattern Classification. Polyhedral Objects. Extended Gaussian Images. Passive Navigation and Structure from Motion. Picking Parts out of a Bin.Berthold Klaus Paul Horn is Associate Professor, Department of Electrical Engineering and Computer Science, MIT. Robot Vision is included in the MIT Electrical Engineering and Computer Science Series.

Downloadable instructor resources available for this title: solution manual