Skip navigation

Scientific & Engineering Computation

This text offers a comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits. It focuses on the use of VHDL rather than solely on the language, showing why and how certain types of circuits are inferred from the language constructs and how any of the four simulation categories can be implemented. It makes a rigorous distinction between VHDL for synthesis and VHDL for simulation.

This textbook takes an innovative approach to the teaching of classical mechanics, emphasizing the development of general but practical intellectual tools to support the analysis of nonlinear Hamiltonian systems. The development is organized around a progressively more sophisticated analysis of particular natural systems and weaves examples throughout the presentation. Explorations of phenomena such as transitions to chaos, nonlinear resonances, and resonance overlap to help the student to develop appropriate analytic tools for understanding.

Analysis and Design


The concept of fuzzy sets is one of the most fundamental and influential tools in computational intelligence. Fuzzy sets can provide solutions to a broad range of problems of control, pattern classification, reasoning, planning, and computer vision. This book bridges the gap that has developed between theory and practice. The authors explain what fuzzy sets are, why they work, when they should be used (and when they shouldn't), and how to design systems using them.

From a Programming Perspective

This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications.