Skip navigation

Engineering

  • Page 2 of 2
  •  

This text is a guide to the foundations of method engineering, a developing field concerned with the definition of techniques for designing software systems. The approach is based on metamodeling, the construction of a model about a collection of other models. The book applies the metamodeling approach in five case studies, each describing a solution to a problem in a specific domain. Suitable for classroom use, the book is also useful as a reference for practitioners.

This text is the first comprehensive presentation of reduction semantics in one volume; it also introduces the first reliable and easy-to-use tool set for such forms of semantics. Software engineers have long known that automatic tool support is critical for rapid prototyping and modeling, and this book is addressed to the working semantics engineer (graduate student or professional language designer). The book comes with a prototyping tool suite to develop, explore, test, debug, and publish semantic models of programming languages.

Building a Modern Computer from First Principles

In the early days of computer science, the interactions of hardware, software, compilers, and operating system were simple enough to allow students to see an overall picture of how computers worked. With the increasing complexity of computer technology and the resulting specialization of knowledge, such clarity is often lost.

Cellular Biophysics is a quantitatively oriented basic physiology text for senior undergraduate and graduate students in bioengineering, biophysics, physiology, and neuroscience programs. It will also serve as a major reference work for biophysicists.

Developed from the author's notes for a course that he has taught at MIT for many years, these books provide a clear and logical explanation of the foundations of cell biophysics, teaching transport and the electrical properties of cells from a combined biological, physical, and engineering viewpoint.

Transport

Cellular Biophysics is a quantitatively oriented basic physiology text for senior undergraduate and graduate students in bioengineering, biophysics, physiology, and neuroscience programs. It will also serve as a major reference work for biophysicists.

Developed from the author's notes for a course that he has taught at MIT for many years, these books provide a clear and logical explanation of the foundations of cell biophysics, teaching transport and the electrical properties of cells from a combined biological, physical, and engineering viewpoint.

In this insightful and incisive essay, Eugene Ferguson demonstrates that good engineering is as much a matter of intuition and nonverbal thinking as of equations and computation. He argues that a system of engineering education that ignores nonverbal thinking will produce engineers who are dangerously ignorant of the many ways in which the real world differs from the mathematical models constructed in academic minds.

Aircraft Engines and Gas Turbines is widely used as a text in the United States and abroad, and has also become a standard reference for professionals in the aircraft engine industry. Unique in treating the engine as a complete system at increasing levels of sophistication, it covers all types of modern aircraft engines, including turbojets, turbofans, and turboprops, and also discusses hypersonic propulsion systems of the future.

The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables.

This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines.

  • Page 2 of 2
  •