Skip navigation

Neuroscience

  •  
  • Page 1 of 5
  • нн
How We Perceive the World

In this accessible and engaging introduction to modern vision science, James Stone uses visual illusions to explore how the brain sees the world. Understanding vision, Stone argues, is not simply a question of knowing which neurons respond to particular visual features, but also requires a computational theory of vision.

An Introduction with Readings
Edited by Martha J. Farah

Neuroscience increasingly allows us to explain, predict, and even control aspects of human behavior. The ethical issues that arise from these developments extend beyond the boundaries of conventional bioethics into philosophy of mind, psychology, theology, public policy, and the law. This broader set of concerns is the subject matter of neuroethics.

The Computational Approach to Biological Vision

Seeing has puzzled scientists and philosophers for centuries and continues to do so. This new edition of a classic text offers an accessible but rigorous introduction to the computational approach to understanding biological visual systems.

An Introduction to Molecular Biology

Recent research in molecular biology has produced a remarkably detailed understanding of how living things operate. Becoming conversant with the intricacies of molecular biology and its extensive technical vocabulary can be a challenge, though, as introductory materials often seem more like a barrier than an invitation to the study of life.

A Survey of Practical Models, Algorithms, and Numerical Methods

There are many excellent computational biology resources now available for learning about methods that have been developed to address specific biological systems, but comparatively little attention has been paid to training aspiring computational biologists to handle new and unanticipated problems. This text is intended to fill that gap by teaching students how to reason about developing formal mathematical models of biological systems that are amenable to computational analysis.

This essential resource on neuroimaging provides an accessible and user-friendly introduction to the field written by leading researchers. The book describes theoretical and methodological developments in the use of functional neuroimaging techniques to study the neural basis of cognition, from early scientific efforts to link brain and behavior to the latest applications of fMRI and PET methods. The core of the book covers fMRI and PET studies in specific domains: attention, skill learning, semantic memory, language, episodic memory, working memory, and executive functions.

Computational and Mathematical Modeling of Neural Systems

Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory.

The event-related potential (ERP) technique in cognitive neuroscience allows scientists to observe human brain activity that reflects specific cognitive processes. In An Introduction to the Event-Related Potential Technique, Steve Luck offers the first comprehensive guide to the practicalities of conducting ERP experiments in cognitive neuroscience and related fields, including affective neuroscience and experimental psychopathology.

Computation, Representation, and Dynamics in Neurobiological Systems

For years, researchers have used the theoretical tools of engineering to understand neural systems, but much of this work has been conducted in relative isolation. In Neural Engineering, Chris Eliasmith and Charles Anderson provide a synthesis of the disparate approaches current in computational neuroscience, incorporating ideas from neural coding, neural computation, physiology, communications theory, control theory, dynamics, and probability theory. This synthesis, they argue, enables novel theoretical and practical insights into the functioning of neural systems.

This introductory text offers a clear exposition of the algorithmic principles driving advances in bioinformatics. Accessible to students in both biology and computer science, it strikes a unique balance between rigorous mathematics and practical techniques, emphasizing the ideas underlying algorithms rather than offering a collection of apparently unrelated problems.

  •  
  • Page 1 of 5
  • нн