Skip navigation

Computational Molecular Biology

  • Page 1 of 2

The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components.

Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision.

The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks

In this book, Dan Gusfield examines combinatorial algorithms to construct genealogical and exact phylogenetic networks, particularly ancestral recombination graphs (ARGs). The algorithms produce networks (or information about networks) that serve as hypotheses about the true genealogical history of observed biological sequences and can be applied to practical biological problems.

An Introduction

Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology.

The introduction of high-throughput methods has transformed biology into a data-rich science. Knowledge about biological entities and processes has traditionally been acquired by thousands of scientists through decades of experimentation and analysis. The current abundance of biomedical data is accompanied by the creation and quick dissemination of new information. Much of this information and knowledge, however, is represented only in text form--in the biomedical literature, lab notebooks, Web pages, and other sources.

Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules.

Contemporary Methods and Applications

Biomedical signal analysis has become one of the most important visualization and interpretation methods in biology and medicine. Many new and powerful instruments for detecting, storing, transmitting, analyzing, and displaying images have been developed in recent years, allowing scientists and physicians to obtain quantitative measurements to support scientific hypotheses and medical diagnoses.

Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model—in other words, to answer specific questions about the underlying mechanisms of a biological system—in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks.

Issues of regulation and control are central to the study of biological and biochemical systems. Thus it is not surprising that the tools of feedback control theory--engineering techniques developed to design and analyze self-regulating systems--have proven useful in the study of these biological mechanisms. Such interdisciplinary work requires knowledge of the results, tools and techniques of another discipline, as well as an understanding of the culture of an unfamiliar research community.

From one cell to another, from one individual to another, and from one species to another, the content of DNA molecules is often similar. The organization of these molecules, however, differs dramatically, and the mutations that affect this organization are known as genome rearrangements. Combinatorial methods are used to reconstruct putative rearrangement scenarios in order to explain the evolutionary history of a set of species, often formalizing the evolutionary events that can explain the multiple combinations of observed genomes as combinatorial optimization problems.

  • Page 1 of 2