Modularity—the attempt to understand systems as integrations of partially independent and interacting units—is today a dominant theme in the life sciences, cognitive science, and computer science. The concept goes back at least implicitly to the Scientific (or Copernican) Revolution, and can be found behind later theories of phrenology, physiology, and genetics; moreover, art, engineering, and mathematics rely on modular design principles.
In the past few decades, sources of inspiration in the multidisciplinary field of cognitive science have widened. In addition to ongoing vital work in cognitive and affective neuroscience, important new work is being conducted at the intersection of psychology and the biological sciences in general. This volume offers an overview of the cross-disciplinary integration of evolutionary and developmental approaches to cognition in light of these exciting new contributions from the life sciences.
The evolutionary roots of human communication are difficult to trace, but recent comparative research suggests that the first key step in that evolutionary history may have been the establishment of basic communicative flexibility—the ability to vocalize freely combined with the capability to coordinate vocalization with communicative intent.
These six original essays focus on a potentially important aspect of evolutionary biology, the possible causal role of phenotypic behavior in evolution. Balancing theory with actual or potential empiricism, they provide the first full examination of this topic.
Human beings, like other organisms, are the products of evolution. Like other organisms, we exhibit traits that are the product of natural selection. Our psychological capacities are evolved traits as much as are our gait and posture. This much few would dispute. Evolutionary psychology goes further than this, claiming that our psychological traits—including a wide variety of traits, from mate preference and jealousy to language and reason—can be understood as specific adaptations to ancestral Pleistocene conditions.
The twentieth century's conceptual separation of the process of evolution (changes in a population as its members reproduce and die) from the process of development (changes in an organism over the course of its life) allowed scientists to study evolution without bogging down in the "messy details" of development. Advances in genetics produced the modern synthesis, which cast the gene as the unit of natural selection.
Abstract and conceptual models have become an indispensable tool for analyzing the flood of highly detailed empirical data generated in recent years by advanced techniques in the biosciences. Scientists are developing new modeling strategies for analyzing data, integrating results into the conceptual framework of theoretical biology, and formulating new hypotheses. In Modeling Biology, leading scholars investigate new modeling strategies in the domains of morphology, development, behavior, and evolution.
Since Darwin we have known that evolution has shaped all organisms and that biological organs—including the brain and the highly crafted animal nervous system—are subject to the pressures of natural and sexual selection. It is only relatively recently, however, that the cognitive neurosciences have begun to apply evolutionary theory and methods to the study of brain and behavior. This landmark reference documents and defines the emerging field of evolutionary cognitive neuroscience.
Ideas about heredity and evolution are undergoing a revolutionary change. New findings in molecular biology challenge the gene-centered version of Darwinian theory according to which adaptation occurs only through natural selection of chance DNA variations. In Evolution in Four Dimensions, Eva Jablonka and Marion Lamb argue that there is more to heredity than genes.
These essays by leading scientists and philosophers address conceptual issues that arise in the theory and practice of evolutionary biology. The third edition of this widely used anthology has been substantially revised and updated. Four new sections have been added: on women in the evolutionary process, evolutionary psychology, laws in evolutionary theory, and race as social construction or biological reality. Other sections treat fitness, units of selection, adaptationism, reductionism, essentialism, species, phylogenetic inference, cultural evolution, and evolutionary ethics.