Skip navigation

Artificial Intelligence

Online decision making under uncertainty and time constraints represents one of the most challenging problems for robust intelligent agents. In an increasingly dynamic, interconnected, and real-time world, intelligent systems must adapt dynamically to uncertainties, update existing plans to accommodate new requests and events, and produce high-quality decisions under severe time constraints.

Proceedings of the 2005 Conference

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications.

For millennia, "from Aristotle to almost yesterday," the great problems of philosophy have all been about people: questions of epistemology and philosophy of mind have concerned human capacities and limitations. Still, say the editors of Thinking about Android Epistemology, there should be theories about other sorts of minds, other ways that physical systems can be organized to produce knowledge and competence.

Art and Artificial Life

Artificial life, or a-life, is an interdisciplinary science focused on artificial systems that mimic the properties of living systems. In the 1990s, new media artists began appropriating and adapting the techniques of a-life science to create a-life art; Mitchell Whitelaw's Metacreation is the first detailed critical account of this new field of creative practice.

A Unified Approach

Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation.

From Biological Inspiration to Implementation and Control

Autonomous robots are intelligent machines capable of performing tasks in the world by themselves, without explicit human control. Examples range from autonomous helicopters to Roomba, the robot vacuum cleaner. In this book, George Bekey offers an introduction to the science and practice of autonomous robots that can be used both in the classroom and as a reference for industry professionals.

Artificial Intelligence from Automata to Cyborgs

Believing that the enterprise of constructing "artificial intelligence" transcends the bounds of any one discipline, the editors of Mechanical Bodies, Computational Minds have brought together researchers in AI and scholars in the humanities to reexamine the fundamental assumptions of both areas.

Edited by Mark T. Maybury

Question answering systems, which provide natural language responses to natural language queries, are the subject of rapidly advancing research encompassing both academic study and commercial applications, the most well-known of which is the search engine Ask Jeeves. Question answering draws on different fields and technologies, including natural language processing, information retrieval, explanation generation, and human computer interaction.

Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems

Artificial Life is an interdisciplinary effort to investigate the fundamental properties of living systems through the simulation and synthesis of life-like processes. The young field brings a powerful set of tools to the study of how high-level behavior can arise in systems governed by simple rules of interaction.

Cynthia Breazeal here presents her vision of the sociable robot of the future, a synthetic creature and not merely a sophisticated tool. A sociable robot will be able to understand us, to communicate and interact with us, to learn from us and grow with us. It will be socially intelligent in a humanlike way. Eventually sociable robots will assist us in our daily lives, as collaborators and companions.