Skip navigation

Artificial Intelligence

  • Page 4 of 26
A Unified Approach

Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation.

From Biological Inspiration to Implementation and Control

Autonomous robots are intelligent machines capable of performing tasks in the world by themselves, without explicit human control. Examples range from autonomous helicopters to Roomba, the robot vacuum cleaner. In this book, George Bekey offers an introduction to the science and practice of autonomous robots that can be used both in the classroom and as a reference for industry professionals.

Our hero is Turing, an interactive tutoring program and namesake (or virtual emanation?) of Alan Turing, World War II code breaker and father of computer science. In this unusual novel, Turing's idiosyncratic version of intellectual history from a computational point of view unfolds in tandem with the story of a love affair involving Ethel, a successful computer executive, Alexandros, a melancholy archaeologist, and Ian, a charismatic hacker.

Bringing the World Wide Web to Its Full Potential

As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language.

Artificial Intelligence from Automata to Cyborgs

Believing that the enterprise of constructing "artificial intelligence" transcends the bounds of any one discipline, the editors of Mechanical Bodies, Computational Minds have brought together researchers in AI and scholars in the humanities to reexamine the fundamental assumptions of both areas.

Edited by Mark T. Maybury

Question answering systems, which provide natural language responses to natural language queries, are the subject of rapidly advancing research encompassing both academic study and commercial applications, the most well-known of which is the search engine Ask Jeeves. Question answering draws on different fields and technologies, including natural language processing, information retrieval, explanation generation, and human computer interaction.

Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems

Artificial Life is an interdisciplinary effort to investigate the fundamental properties of living systems through the simulation and synthesis of life-like processes. The young field brings a powerful set of tools to the study of how high-level behavior can arise in systems governed by simple rules of interaction.

Cynthia Breazeal here presents her vision of the sociable robot of the future, a synthetic creature and not merely a sophisticated tool. A sociable robot will be able to understand us, to communicate and interact with us, to learn from us and grow with us. It will be socially intelligent in a humanlike way. Eventually sociable robots will assist us in our daily lives, as collaborators and companions.

Proceedings of the Nineteenth National Conference on Artificial Intelligence

The National Conference on Artificial Intelligence remains the bellwether for research in artificial intelligence. Leading AI researchers and practitioners as well as scientists and engineers in related fields present theoretical, experimental, and empirical results, covering a broad range of topics that include principles of cognition, perception, and action; the design, application, and evaluation of AI algorithms and systems; architectures and frameworks for classes of AI systems; and analyses of tasks and domains in which intelligent systems perform.

The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior.

  • Page 4 of 26