Multiagent systems are made up of multiple interacting intelligent agents—computational entities to some degree autonomous and able to cooperate, compete, communicate, act flexibly, and exercise control over their behavior within the frame of their objectives. They are the enabling technology for a wide range of advanced applications relying on distributed and parallel processing of data, information, and knowledge relevant in domains ranging from industrial manufacturing to e-commerce to health care.
The notion of function is an integral part of thinking in both biology and technology. Biological organisms and technical artifacts are both ascribed functionality; yet the concept of function is notoriously obscure (with problematic issues regarding the normative and the descriptive nature of functions, for example) and demands philosophical clarification.
Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time.
The Internet gives us access to a wealth of information in languages we don't understand. The investigation of automated or semi-automated approaches to translation has become a thriving research field with enormous commercial potential. This volume investigates how machine learning techniques can improve statistical machine translation, currently at the forefront of research in the field.
Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases, and programming languages to represent structure.
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field.
E-commerce increasingly provides opportunities for autonomous bidding agents: computer programs that bid in electronic markets without direct human intervention. Automated bidding strategies for an auction of a single good with a known valuation are fairly straightforward; designing strategies for simultaneous auctions with interdependent valuations is a more complex undertaking. This book presents algorithmic advances and strategy ideas within an integrated bidding agent architecture that have emerged from recent work in this fast-growing area of research in academia and industry.
Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation.
The new Robotics: Science and Systems conference spans all areas of robotics, bringing together researchers working on the algorithmic and mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume contains papers presented at the inaugural conference, held at MIT in June, 2005.
Additional information can be found at http://roboticsconference.org, or by clicking on the link to the left.
Cynthia Breazeal here presents her vision of the sociable robot of the future, a synthetic creature and not merely a sophisticated tool. A sociable robot will be able to understand us, to communicate and interact with us, to learn from us and grow with us. It will be socially intelligent in a humanlike way. Eventually sociable robots will assist us in our daily lives, as collaborators and companions.