Skip navigation

Neural Information Processing Systems

  • Page 2 of 9
Proceedings of the 2004 Conference

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications.

Theory and Applications

The process of inductive inference—to infer general laws and principles from particular instances—is the basis of statistical modeling, pattern recognition, and machine learning. The Minimum Descriptive Length (MDL) principle, a powerful method of inductive inference, holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data—that the more we are able to compress the data, the more we learn about the regularities underlying the data.

A Comparative Approach

The search for origins of communication in a wide variety of species including humans is rapidly becoming a thoroughly interdisciplinary enterprise. In this volume, scientists engaged in the fields of evolutionary biology, linguistics, animal behavior, developmental psychology, philosophy, the cognitive sciences, robotics, and neural network modeling come together to explore a comparative approach to the evolution of communication systems.

Proceedings of the 2003 Conference

The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications.

The Biology, Intelligence, and Technology of Self-Organizing Machines

Evolutionary robotics is a new technique for the automatic creation of autonomous robots. Inspired by the Darwinian principle of selective reproduction of the fittest, it views robots as autonomous artificial organisms that develop their own skills in close interaction with the environment and without human intervention. Drawing heavily on biology and ethology, it uses the tools of neural networks, genetic algorithms, dynamic systems, and biomorphic engineering.

Proceedings of the 2002 Conference

The annual Neural Information Processing (NIPS) meeting is the flagship conference on neural computation. The conference draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists—and the presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and applications.

The Design of Brain-Like Machines
Edited by Igor Aleksander

McClelland and Rumelhart's Parallel Distributed Processing was the first book to present a definitive account of the newly revived connectionist/neural net paradigm for artificial intelligence and cognitive science. While Neural Computing Architectures addresses the same issues, there is little overlap in the research it reports. These 18 contributions provide a timely and informative overview and synopsis of both pioneering and recent European connectionist research.

Visual Reconstruction presents a unified and highly original approach to the treatment of continuity in vision. It introduces, analyzes, and illustrates two new concepts. The first—the weak continuity constraint—is a concise, computational formalization of piecewise continuity. It is a mechanism for expressing the expectation that visual quantities such as intensity, surface color, and surface depth vary continuously almost everywhere, but with occasional abrupt changes. The second concept—the graduated nonconvexity algorithm—arises naturally from the first.

As book review editor of the IEEE Transactions on Neural Networks, Mohamad Hassoun has had the opportunity to assess the multitude of books on artificial neural networks that have appeared in recent years. Now, in Fundamentals of Artificial Neural Networks, he provides the first systematic account of artificial neural network paradigms by identifying clearly the fundamental concepts and major methodologies underlying most of the current theory and practice employed by neural network researchers.

The Adaptive Suspension Vehicle

What is 16 feet long, 10 feet high, weighs 6,000 pounds, has six legs, and can sprint at 8 mph and step over a 4 foot wall? The Adaptive Suspension Vehicle (ASV) described in this book.

  • Page 2 of 9