Skip navigation

Neural Information Processing Systems

  • Page 3 of 9

Motivated by the remarkable fluidity of memory the way in which items are pulled spontaneously and effortlessly from our memory by vague similarities to what is currently occupying our attention Sparse Distributed Memory presents a mathematically elegant theory of human long term memory.

The Adaptive Suspension Vehicle

What is 16 feet long, 10 feet high, weighs 6,000 pounds, has six legs, and can sprint at 8 mph and step over a 4 foot wall? The Adaptive Suspension Vehicle (ASV) described in this book.

As book review editor of the IEEE Transactions on Neural Networks, Mohamad Hassoun has had the opportunity to assess the multitude of books on artificial neural networks that have appeared in recent years. Now, in Fundamentals of Artificial Neural Networks, he provides the first systematic account of artificial neural network paradigms by identifying clearly the fundamental concepts and major methodologies underlying most of the current theory and practice employed by neural network researchers.

Artificial Neural Networks (ANNs) offer an efficient method for finding optimal cleanup strategies for hazardous plumes contaminating groundwater by allowing hydrologists to rapidly search through millions of possible strategies to find the most inexpensive and effective containment of contaminants and aquifer restoration. ANNs also provide a faster method of developing systems that classify seismic events as being earthquakes or underground explosions.

Proceedings of the 2001 Conference

The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2001 conference.

Foundations of Neural Computation

Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology.

Foundations of Neural Computation

This book provides an overview of self-organizing map formation, including recent developments. Self-organizing maps form a branch of unsupervised learning, which is the study of what can be determined about the statistical properties of input data without explicit feedback from a teacher. The articles are drawn from the journal Neural Computation.

There is a sense among scientists that the time is finally ripe for the problem of consciousness to be solved once and for all. The development of new experimental and theoretical tools for probing the brain has produced an atmosphere of unparalleled optimism that the job can now be done properly: The race for consciousness is on!

Proceedings of the 2000 Conference

The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2000 conference.

In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation.

  • Page 3 of 9