Skip navigation

Neural Information Processing Systems

  • Page 4 of 8
Edited by Ian Cloete and J M. Zurada

Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic.

There is a sense among scientists that the time is finally ripe for the problem of consciousness to be solved once and for all. The development of new experimental and theoretical tools for probing the brain has produced an atmosphere of unparalleled optimism that the job can now be done properly: The race for consciousness is on!

Parallel Distributed Perception and Performance

Supervised Learning in Feedforward Artificial Neural Networks

It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brain's programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models.

Neuropsychology and Cognitive Neuroscience

Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists.

An Oral History of Neural Networks


Since World War II, a group of scientists has been attempting to understand the human nervous system and to build computer systems that emulate the brain's abilities. In this collection of interviews, those who helped to shape the field share their childhood memories, their influences, how they became interested in neural networks, and how they envision its future.

  • Page 4 of 8