An introduction to many mathematical topics applicable to quantitative finance that teaches how to “think in mathematics” rather than simply do mathematics by rote.
An analysis of Newton’s mathematical work, from early discoveries to mature reflections, and a discussion of Newton’s views on the role and nature of mathematics.
Volume 2 of Musimathics continues the story of music engineering begun in volume 1, focusing on the digital and computational domain. Loy goes deeper into the mathematics of music and sound, beginning with digital audio, sampling, and binary numbers, as well as complex numbers and how they simplify representation of musical signals. Chapters cover the Fourier transform, convolution, filtering, resonance, the wave equation, acoustical systems, sound synthesis, the short-time Fourier transform, and the wavelet transform.
“Mathematics can be as effortless as humming a tune, if you know the tune,” writes Gareth Loy. In Musimathics, Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music--a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science.
In Majority Judgment, Michel Balinski and Rida Laraki argue that the traditional theory of social choice offers no acceptable solution to the problems of how to elect, to judge, or to rank. They find that the traditional model--transforming the "preference lists" of individuals into a "preference list" of society--is fundamentally flawed in both theory and practice.
In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.
Robert Reitano’s Introduction to Quantitative Finance offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems. This manual provides solutions to the Practice Exercises in the text.
This text offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems.
Historians of mathematics have devoted considerable attention to Isaac Newton's work on algebra, series, fluxions, quadratures, and geometry. In Isaac Newton on Mathematical Certainty and Method, Niccolò Guicciardini examines a critical aspect of Newton's work that has not been tightly connected to Newton's actual practice: his philosophy of mathematics.
This text provides an introduction to the modern theory of economic dynamics, with emphasis on mathematical and computational techniques for modeling dynamic systems. Written to be both rigorous and engaging, the book shows how sound understanding of the underlying theory leads to effective algorithms for solving real world problems. The material makes extensive use of programming examples to illustrate ideas. These programs help bring to life the abstract concepts in the text.
For much of the first half of the twentieth century, meteorology was more art than science, dependent on an individual forecaster's lifetime of local experience. In Weather by the Numbers, Kristine Harper tells the story of the transformation of meteorology from a "guessing science" into a sophisticated scientific discipline based on physics and mathematics.
This text offers an introduction to quantum computing, with a special emphasis on basic quantum physics, experiment, and quantum devices. Unlike many other texts, which tend to emphasize algorithms, Quantum Computing without Magic explains the requisite quantum physics in some depth, and then explains the devices themselves.