Skip navigation

Cellular & Molecular Neuroscience

  •  
  • Page 1 of 2
  • нн
Molecular, Cellular, and Functional Aspects

Synaptic Plasticity presents an up-to-date overview of the current status of research on the full scope of synaptic plasticity, including synaptic remodeling in response to damage, long-term depression and long-term potentiation, and learning and memory.The contributions are written by leading experts in the field and cover approaches from biochemical, anatomical, physiological, behavioral, and computational levels.

The traditional model of synapses as fixed structures has been replaced by a dynamic one in which synapses are constantly being deleted and replaced. This book, written by a leading researcher on the neurochemistry of schizophrenia, integrates material from neuroscience and cell biology to provide a comprehensive account of our current knowledge of the neurochemical basis of synaptic plasticity.

Because neurons and glia in culture are remarkably similar to those in situ, culture systems make it possible to identify significant cell interactions and to elucidate their mechanisms. This book is in many ways a do-it-yourself manual for culturing nerve cells, complete with recipes and protocols. But it also provides an understanding of the principles behind the protocols. In effect the contributors invite you into their labs and provide much of the information you would obtain from such a visit.

From Ions to Networks


Much research focuses on the question of how information is processed in nervous systems, from the level of individual ionic channels to large-scale neuronal networks, and from "simple" animals such as sea slugs and flies to cats and primates. New interdisciplinary methodologies combine a bottom-up experimental methodology with the more top-down-driven computational and modeling approach. This book serves as a handbook of computational methods and techniques for modeling the functional properties of single and groups of nerve cells.


Cellular Biophysics is a quantitatively oriented basic physiology text for senior undergraduate and graduate students in bioengineering, biophysics, physiology, and neuroscience programs. It will also serve as a major reference work for biophysicists.

Transport

Cellular Biophysics is a quantitatively oriented basic physiology text for senior undergraduate and graduate students in bioengineering, biophysics, physiology, and neuroscience programs. It will also serve as a major reference work for biophysicists.

Recent years have seen a remarkable expansion of knowledge about the anatomical organization of the part of the brain known as the basal ganglia, the signal processing that occurs in these structures, and the many relations both to molecular mechanisms and to cognitive functions. This book brings together the biology and computational features of the basal ganglia and their related cortical areas along with select examples of how this knowledge can be integrated into neural network models.

  •  
  • Page 1 of 2
  • нн