Skip navigation

Computational Neuroscience

  • Page 4 of 6
Foundations of Neural Computation

This book provides an overview of self-organizing map formation, including recent developments. Self-organizing maps form a branch of unsupervised learning, which is the study of what can be determined about the statistical properties of input data without explicit feedback from a teacher. The articles are drawn from the journal Neural Computation.

Proceedings of the 2000 Conference

The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2000 conference.

Understanding the Mind by Simulating the Brain

The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex.

Proceedings of the 1999 Conference

The annual conference on Neural Information Processing System (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory.

Edited by Ian Cloete and J M. Zurada

Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic.

Exploring the Neural Code


What does it mean to say that a certain set of spikes is the right answer to a computational problem? In what sense does a spike train convey information about the sensory world? Spikes begins by providing precise formulations of these and related questions about the representation of sensory signals in neural spike trains. The answers to these questions are then pursued in experiments on sensory neurons.

Foundations of Neural Computation

Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computationcollects, by topic, the most significant papers that have appeared in the journal over the past nine years.

Computational, Neurobiological, and Psychophysical Perspectives
Edited by Takeo Watanabe

Motion perception is fundamental to survival. Until recently, research on motion perception emphasized such basic aspects of motion as sampling and filtering. In the past decade, however, the emphasis has gradually shifted to higher-level motion processing—i.e., processing that takes place not only in the primary visual cortex but also in the "higher" or more complicated parts of the brain.

Neural, Psychological, and Computational Perspectives

foreword by Alan M. Wing

Athletes and musicians demonstrate the levels to which humans can ascend in the timing of behavior. But even common actions, such as opening a door or bringing a cup to one's lips, reveal how we organize our behavior temporally. When there is damage to the nervous system and the ability to time behavior breaks down, we become aware of how many things must go right for timing not to go terribly wrong.

  • Page 4 of 6