Skip navigation

Neural Computation

  •  
  • Page 1 of 5
  • ÝÝ

Crucial to understanding how the brain works is connectivity, and the centerpiece of brain connectivity is the connectome, a comprehensive description of how neurons and brain regions are connected. The human brain is a network of extraordinary complexity--a network not by way of metaphor, but in a precise and mathematical sense: an intricate web of billions of neurons connected by trillions of synapses. How this network is connected is important for virtually all facets of the brain’s integrative function.

Global State Interactions

The consideration of time or dynamics is fundamental for all aspects of mental activity--perception, cognition, and emotion--because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field.

From Neural Computation to Optimality-Theoretic Grammar Volume I: Cognitive Architecture
From Neural Computation to Optimality-Theoretic Grammar Volume II: Linguistic and Philosophical Implications

Despite their apparently divergent accounts of higher cognition, cognitive theories based on neural computation and those employing symbolic computation can in fact strengthen one another. To substantiate this controversial claim, this landmark work develops in depth a cognitive architecture based in neural computation but supporting formally explicit higher-level symbolic descriptions, including new grammar formalisms.

The Geometry of Excitability and Bursting

In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology.

This book offers an introduction to current methods in computational modeling in neuroscience. The book describes realistic modeling methods at levels of complexity ranging from molecular interactions to large neural networks. A "how to" book rather than an analytical account, it focuses on the presentation of methodological approaches, including the selection of the appropriate method and its potential pitfalls.

Cybernetics, Artificial Life, and the New AI

In The Allure of Machinic Life, John Johnston examines new forms of nascent life that emerge through technical interactions within human-constructed environments—"machinic life"—in the sciences of cybernetics, artificial life, and artificial intelligence. With the development of such research initiatives as the evolution of digital organisms, computer immune systems, artificial protocells, evolutionary robotics, and swarm systems, Johnston argues, machinic life has achieved a complexity and autonomy worthy of study in its own right.

Proceedings of the 2006 Conference

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. It draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists—interested in theoretical and applied aspects of modeling, simulating, and building neural-like or intelligent systems.

Interest in developing an effective communication interface connecting the human brain and a computer has grown rapidly over the past decade. The brain-computer interface (BCI) would allow humans to operate computers, wheelchairs, prostheses, and other devices, using brain signals only.

Probabilistic Approaches to Neural Coding

A Bayesian approach can contribute to an understanding of the brain on multiple levels, by giving normative predictions about how an ideal sensory system should combine prior knowledge and observation, by providing mechanistic interpretation of the dynamic functioning of the brain circuit, and by suggesting optimal ways of deciphering experimental data.

  •  
  • Page 1 of 5
  • ÝÝ