Crucial to understanding how the brain works is connectivity, and the centerpiece of brain connectivity is the connectome, a comprehensive description of how neurons and brain regions are connected. The human brain is a network of extraordinary complexity--a network not by way of metaphor, but in a precise and mathematical sense: an intricate web of billions of neurons connected by trillions of synapses. How this network is connected is important for virtually all facets of the brain’s integrative function.
Linguists have mapped the topography of language behavior in many languages in intricate detail. To understand how the brain supports language function, however, we must take into account the principles and regularities of neural function. Mechanisms of neurolinguistic function cannot be inferred solely from observations of normal and impaired language. In The Neural Architecture of Grammar, Stephen Nadeau develops a neurologically plausible theory of grammatic function.
Vision is a massively parallel computational process, in which the retinal image is transformed over a sequence of stages so as to emphasize behaviorally relevant information (such as object category and identity) and deemphasize other information (such as viewpoint and lighting). The processes behind vision operate by concurrent computation and message passing among neurons within a visual area and between different areas.
A person with synesthesia might feel the flavor of food on her fingertips, sense the letter J as shimmering magenta or the number 5 as emerald green, hear and taste a spouse’s voice as buttery golden brown. Synesthetes rarely talk about their peculiar sensory gift--believing either that everyone else senses the world exactly as they do, or that no one else does. Yet synesthesia occurs in one in twenty people, and is even more common among artists.
Every time we listen--to speech, to music, to footsteps approaching or retreating--our auditory perception is the result of a long chain of diverse and intricate processes that unfold within the source of the sound itself, in the air, in our ears, and, most of all, in our brains. Hearing is an “everyday miracle” that, despite its staggering complexity, seems effortless. This book offers an integrated account of hearing in terms of the neural processes that take place in different parts of the auditory system.
Hemispheric asymmetry is one of the basic aspects of perception and cognitive processing. The different functions of the left and right hemispheres of the brain have been studied with renewed interest in recent years, as scholars explore applications to new areas, new measuring techniques, and new theoretical approaches. This volume provides a comprehensive view of the latest research in brain asymmetry, offering not only recent empirical and clinical findings but also a coherent theoretical approach to the subject.
The thalamus plays a critical role in perceptual processing, but many questions remain about what thalamic activities contribute to sensory and motor functions. In this book, two pioneers in research on the thalamus examine the close two-way relationships between thalamus and cerebral cortex and look at the distinctive functions of the links between the thalamus and the rest of the brain.
The question of consciousness is perhaps the most significant problem still unsolved by science. In Inner Presence, Antti Revonsuo proposes a novel approach to the study of consciousness that integrates findings from philosophy, psychology, and cognitive neuroscience into a coherent theoretical framework.
In the past few decades, sources of inspiration in the multidisciplinary field of cognitive science have widened. In addition to ongoing vital work in cognitive and affective neuroscience, important new work is being conducted at the intersection of psychology and the biological sciences in general. This volume offers an overview of the cross-disciplinary integration of evolutionary and developmental approaches to cognition in light of these exciting new contributions from the life sciences.
What does feeling a sharp pain in one's hand have in common with seeing a red apple on the table? Some say not much, apart from the fact that they are both conscious experiences. To see an object is to perceive an extramental reality—in this case, a red apple. To feel a pain, by contrast, is to undergo a conscious experience that doesn't necessarily relate the subject to an objective reality. Perceptualists, however, dispute this. They say that both experiences are forms of perception of an objective reality.