The Computational Beauty of Nature
Computer Explorations of Fractals, Chaos,
Complex Systems, and Adaptation

About the Book
  · title page
  · home*
  · cover artwork
  · jacket text
  · table of contents
  · the author*
  · ordering information
Book Contents
  · three themes
  · part synopses
  · selected excerpts
  · all figures from book
  · quotes from book
  · glossary from book
  · bibliography
  · slide show
Source Code
  · overview &
  · FAQ list*
  · download source code
  · java applets
  · news*
  · reviews & awards
  · errata
  · for educators
  · bibliography (BibTeX format)
  · other links

  • Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer programs. Cambridge, Mass.: MIT Press.

  • Arbib, M. A. (1966). Self-reproducing automata---some implications for theoretical biology. In C. H. Waddington (Ed.), Towards a theoretical biology, volume 2 (pp. 204--226). Edinburgh: Edinburgh University Press.

  • Arneodo, A., Coullet, P., & Tresser, C. (1980). Occurrence of strange attractors in three-dimensional Volterra equations. Phys. Lett. A, 79A(4): 259--63.

  • Ashby, W. R. (1966). An introduction to cybernetics. New York: John Wiley & Sons.

  • Awad, E. M. (1996). Building expert systems: Principles, procedures, and applications. Minneapolis/St.Paul: West/Wadsworth.

  • Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

  • Axelrod, R. & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489): 1390--1396.

  • Bai-Lin, H. (Ed.). (1984). Chaos. Singapore: World Scientific.

  • Bak, P. (1996). How nature works: The science of self-organized criticality. New York: Springer-Verlag.

  • Bak, P. & Chen, K. (January 1991). Self-organized criticality. Sci. Am., 264(1).

  • Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Phys. Rev. A, 38(1): 364--374.

  • Barlow, C. (1991). From Gaia to selfish genes: Selected writings in the life sciences. Cambridge, Mass.: MIT Press.

  • Barnsley, M. (1988). Fractals everywhere. New York: Academic Press.

  • Barnsley, M. (1989). Iterated function systems. In Chaos and Fractals: The Mathematics Behind the Computer Graphics, volume 39 of Proc. Symposia Appl. Math., Providence, R.I. American Mathematical Society.

  • Beckmann, P. (1977). A history of Pi (Fourth ed.). Boulder, Colo.: Golem Press.

  • Benhabib, J. (Ed.). (1992). Cycles and chaos in economic equilibrium. Princeton: Princeton University Press.

  • Bennett, C. H., Gács, P., Li, M., Vitanyi, P. M. B., & Zurek, W. H. (1993). Thermodynamics of computation and information distance. In Proceedings of the twenty-fifth annual ACM symposium on theory of computing, (pp. 21--30)., San Diego. ACM Press.

  • Bennett, C. H. & Landauer, R. (July 1985). Fundamental physical limits of computation. Sci. Am., 253(1): 48--56.

  • Berlekamp, E., Conway, J. H., & Guy, R. (1982). Winning ways for your mathematical plays. London: Academic Press.

  • Blum, L., Cucker, F., Shub, M., & Smale, S. (1995). Complexity and real computation: A manifesto. Technical Report TR-95-042, International Computer Science Institute, Berkeley, Calif.

  • Blum, L., Shub, M., & Smale, S. (1988). On a theory of computation over the real numbers; NP completeness, recursive functions and universal machines (extended abstract). In 29th annual symposium on foundations of computer science, (pp. 387--397)., White Plains, N.Y. IEEE.

  • Bowler, P. J. (1996). Charles Darwin: The Man and his influence. Cambridge: Cambridge University Press.

  • Boyd, R. & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago: University of Chicago Press.

  • Breder, C. M. (1951). Studies in the structure of the fish school. Bull. Am. Mus. Nat. Hist., 98(3): 7ff.

  • Bremmerman, H. J. (1962). Optimization through evolution and recombination. In M. C. Yovits, G. T. Jacobi, & G. D. Goldstein (Eds.), Self-organizing systems (pp. 93ff). Washington, D.C.: Spartan Books.

  • Bryson, A. E. & Ho, Y. C. (1969). Applied optimal control. New York: Blaisdell.

  • Burks, A. W. (1961). Notes on John von Neumann's cellular self-reproducing automaton. Technical Report 108, Department of Computer Science, University of Illinois, Urbana.

  • Burks, A. W. (1974). Cellular automata and natural systems. In Keidel, W. D., Händler, W., & Spreng, M. (Eds.), Cybernetics and bionics, (pp. 190--204)., Munich. R. Oldenbourg.

  • Cairns-Smith, A. G. (1966). The origin of life and the nature of the primitive gene. J. Theor. Biol., 10(1): 53--88.

  • Cairns-Smith, A. G. (1985). Seven clues to the origin of life. Cambridge: Cambridge University Press.

  • Capra, F. (1996). The web of life: A new scientific understanding of living systems. New York: Doubleday.

  • Casti, J. L. (1989). Alternate realities: Mathematical models of nature and man. New York: John Wiley & Sons.

  • Casti, J. L. (1994). Complexification: Explaining a paradoxical world through the science of surprise. New York: HarperCollins.

  • Caudill, M. & Butler, C. (1990). Naturally intelligent systems. Cambridge, Mass.: MIT Press.

  • Chaitin, G. J. (1966). On the length of programs for computing finite binary sequences. J. ACM, 13(4): 547--569.

  • Chaitin, G. J. (1969). On the simplicity and speed of programs for computing infinite sets of natural numbers. J. ACM, 16(3): 407--422.

  • Chaitin, G. J. (January 1970). To a mathematical definition of ``life''. ACM SIGACT News, 4: 12--18.

  • Chaitin, G. J. (1975). A theory of program size formally identical to information theory. J. ACM, 22(3): 329--340.

  • Chaitin, G. J. (1997). The limits of mathematics: A course on information theory & limits of formal reasoning. Singapore: Springer-Verlag.

  • Charles-Edwards, D. A. (1986). Modelling plant growth and development. New York: Academic Press.

  • Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are. In Mylopoulos, J. & Reiter, R. (Eds.), Proceedings IJCAI-91, (pp. 331--336)., Sydney.

  • Chomsky, N. (1956). Three models for the description of language. IRE Trans. Info. Theory, 1: 113--124.

  • Chomsky, N. (1959). On certain formal properties of grammars. Info. and Control, 2(2): 137--167.

  • Chomsky, N. & Miller, G. A. (1958). Finite state languages. Info. and Control, 1(2): 91--112.

  • Church, A. (1936). A note on the Entscheidungsproblem. J. Symbol. Logic, 1: 40--41 and 101--102.

  • Church, A. (1951). The Calculi of Lambda-Conversion, volume 6 of Annals of Mathematical Studies. Princeton: Princeton University Press.

  • Clark, W. R. (1995). At war within: The double-edged sword of immunity. New York: Oxford University Press.

  • Conrad, M. & Pattee, H. H. (1970). Evolution experiments with an artificial ecosystem. J. Theor. Biol., 28(3): 393--409.

  • Cook, S. A. (1971). The complexity of theorem-proving procedures. In Conference record of third annual ACM symposium on theory of Computing, (pp. 151--158)., Shaker Heights, Oh. ACM.

  • Cowan, G., Pines, D., & Meltzer, D. (Eds.). (1994). Complexity: Metaphors, models, and reality, volume XIX of Santa Fe Institute Studies in the Sciences of Complexity. Reading, Mass.: Addison-Wesley.

  • Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction. Physica D, 75(1--3): 11--54.

  • Crutchfield, J. P. & Young, K. (1989a). Computation at the onset of chaos. In W. Zurek (Ed.), Complexity, entropy and the physics of information. Reading, Mass.: Addison-Wesley.

  • Crutchfield, J. P. & Young, K. (1989b). Inferring statistical complexity. Phys. Rev. Lett., 63(2): 105--108.

  • Darwin, C. (1859). On the origin of species. London: John Murray.

  • DasGupta, B., Siegelmann, H., & Sontag, E. (1994). On the intractability of loading neural networks. In V. Roychowdhury, K.-Y. Siu, & A. Orlitsky (Eds.), Theoretical advances in neural computation and learning. Boston: Kluwer.

  • Dauben, J. W. (1990). Georg Cantor: His mathematics and philosophy of the infinite. Princeton: Princeton University Press.

  • Davis, M. (Ed.). (1965). The undecidable. New York: Raven Press.

  • Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

  • Dawkins, R. (1983). The extended phenotype: The gene as a unit of selection. Oxford: Oxford University Press.

  • Dawkins, R. (1986). The blind watchmaker. New York: W. W. Norton.

  • Dennett, D. C. (1978). Brainstorms: Philosophical essays on mind and psychology. Cambridge, Mass.: Bradford Books/MIT Press.

  • Derrida, B. & Pomeau, Y. (1986). Random networks of automata: A simple annealed approximation. Europhys. Lett., 1(2): 45--49.

  • Descartes, R. (1987). Méditations on first philosophy. Cambridge: Cambridge University Press.

  • Dewdney, A. K. (1984). Computer Recreations: Sharks and fish wage an ecological war on the toroidal planet wa-tor. Sci. Am., 251(6): 14--22.

  • Dewdney, A. K. (1985). Computer Recreations: Exploring the field of genetic algorithms in a primordial computer sea full of flibs. Sci. Am., 253(5): 21--32.

  • Dewdney, A. K. (August 1988). The hodgepodge machine makes waves. Sci. Am., 225(8): 104--107.

  • Dewdney, A. K. (1989). The Turing omnibus: 61 excursions in computer science. Rockville, Md.: Computer Science Press.

  • Dewdney, A. K. (1993). 200 percent of nothing: An eye-opening tour through the twists and turns of math abuse and innumeracy. New York: John Wiley & Sons.

  • Doyle, J. C., Francis, B. A., & Tannenbaum, A. R. (1992). Feedback control theory. New York: MacMillan.

  • Edelman, G. M. (1987). Neural darwinism: The theory of neuronal group selection. New York: Basic Books.

  • Eigen, M. & Winkler, R. (1982). The laws of the game: How the principles of nature govern chance. New York: Harper Colophon.

  • Esbensen, B. J. & Davie, H. K. (1996). Echoes for the Eye: Poems to celebrate patterns in nature. New York: HarperCollins.

  • Faltings, G. (1995). The proof of Fermat's Last Theorem by R. Taylor and A. Wiles. Notices Amer. Math. Soc., 42(7): 743--746.

  • Farmer, D. & Kauffman, S. (1988). Biological modelling: What's evolving in artificial life. Nature, 331(6155): 390--391.

  • Farmer, D., Toffoli, T., & Wolfram, S. (Eds.). (1983). Cellular Automata: Proceedings of an Interdisciplinary Workshop, Amsterdam. North-Holland.

  • Farmer, J. D. (1990). Rosetta stone for connectionism. Physica D, 42(1--3): 153--187.

  • Farmer, J. D., Lapedes, A., Packard, N. H., & Wendroff, B. (1986). Evolution, games and learning. Amsterdam: North-Holland.

  • Farmer, J. D., Ott, E., & Yorke, J. A. (1983). The dimension of chaotic attractors. Physica D, 7(1--3): 153--180.

  • Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, adaptation & learning. Physica D, 22(1--3): 187--204.

  • Feigenbaum, M. J. (1978). Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19(1): 25--52.

  • Feigenbaum, M. J. (1979). The universal metric properties of nonlinear transformations. J. Stat. Phys., 21(6): 669--706.

  • Field, R. J. & Noyes, R. M. (1974). Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction. J. Am. Chem. Soc., 96(7): 2001--2006.

  • Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence through Simulated Evolution. New York: Wiley.

  • Forrest, S. & Mayer-Kress, G. (1991). Using genetic algorithms in nonlinear dynamical systems and international security models. In L. Davis (Ed.), The genetic algorithms handbook (pp. 166--185). New York: Van Nostrand Reinhold.

  • Fowler, D. R., Meinhardt, H., & Prusinkiewicz, P. (1992). Modeling seashells. Comp. Graphics, 26(2): 379--387.

  • Fredkin, E. & Toffoli, T. (1982). Conservative logic. Int. J. Theor. Phys., 21(3--4): 219--253.

  • Gale, D. & Propp, J. (1994). Further ant-ics. Math. Intell., 16(1): 37--42.

  • Gardner, M. (1961). More mathematical puzzles and diversions. New York: Penguin.

  • Gardner, M. (October 1970). Mathematical Games: The fantastic combinations of John Conway's new solitaire game `Life'. Sci. Am., 223(4): 120--123.

  • Gardner, M. (1971). Mathematical Games: On cellular automata, self-reproduction, the Garden of Eden and the game of ``Life''. Sci. Am., 224(2): 112--117.

  • Gardner, M. (April 1978). Mathematical Games: White and brown music, fractal curves and 1/f fluctuations. Sci. Am., 238: 16--32.

  • Gardner, M. (1983). Wheels, life, and other mathematical amusements. New York: W. H. Freeman.

  • Garey, M. R. & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York: W. H. Freeman.

  • Garfinkel, A., Spano, M. L., & Ditto, W. L. (1992). Controlling cardiac chaos. Science, 257(5074): 1230.

  • Gell-Mann, M. (1995). The quark and the jaguar: Adventures in the simple and the complex. New York: W. H. Freeman.

  • Gerhardt, M., Schuster, H., & Tyson, J. J. (1991). A cellular automaton model of excitable media IV. Untwisted scroll rings. Physica D, 50(2): 189--206.

  • Gleick, J. (1987). Chaos. New York: Viking.

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I. Monats. für Math. und Phys., 38: 173--198.

  • Gödel, K. (1932). Ein spezialfall des entscheidungsproblem der theoretischen logik. Ergebn. math. Kolloq., 2: 27--28.

  • Gödel, K. (1965). On intuitionistic arithmetic and number theory. In M. Davis (Ed.), The undecidable (pp. 75--81). New York: Raven Press.

  • Gödel, K. (1986). On completeness and consistency. In S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, & J. Van Heijenoort (Eds.), Kurt Gödel: Collected works, volume 1 (pp. 235--237). Oxford: Oxford University Press.

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, Mass.: Addison-Wesley.

  • Goldstine, H. H. (1993). The computer from Pascal to von Neumann. Princeton: Princeton University Press.

  • Gonick, L. & Smith, W. (1993). The cartoon guide to statistics. New York: HarperCollins.

  • Grebogi, C., Ott, E., & Yorke, J. A. (1987). Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science, 238(4827): 632--638.

  • Hall, N. (Ed.). (1991). Exploring chaos: A guide to the new science of disorder. New York: W. W. Norton & Co.

  • Hamilton, W. (1964). The genetical evolution of social behavior. J. Theor. Biol., 7: 1--31.

  • Haykin, S. (1994). Neural networks: A comprehensive foundation. New York: MacMillan.

  • Hebb, D. O. (1949). The organization of behavior. New York: Wiley & Sons.

  • Hènon, M. (1976). A two-dimensional mapping with a strange attractor. Comm. Math. Phys., 50(1): 69--77.

  • Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation. Reading, Mass.: Addison-Wesley.

  • Hillis, W. D. (1992). Co-evolving parasites improve simulated evolution as an optimization procedure. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial life II, volume 10 of Sante Fe Institute Studies in the Sciences of Complexity (pp. 313--324). Redwood City, Calif.: Addison-Wesley.

  • Hirst, B. & Mandelbrot, B. (1995). Fractal landscapes from the real world. New York: Distributed Art Publishers.

  • Hodges, A. (1983). Alan Turing: The enigma. New York: Simon and Schuster.

  • Hofstadter, D. R. (1979). Gödel, Escher, Bach: An eternal golden braid. New York: Basic Books.

  • Hofstadter, D. R. (1985). Metamagical themas: Questing for the essence of mind and pattern. New York: Basic Books.

  • Hogeweg, P. (1988). Cellular automata as a paradigm for ecological modelling. App. Math. & Comp., 27(1).

  • Hogg, T., Huberman, B. A., & McGlade, J. M. (1989). The stability of ecosystems. Proc. Royal Soc. of London, B237(1286): 43--51.

  • Hogg, T., Huberman, B. A., & Williams, C. P. (1996). Phase transitions and the search problem. Art. Intell., 81(1--2): 1--15.

  • Holland, J. H. (1962). Outline for a logical theory of adaptive systems. J. ACM, 9: 297--314.

  • Holland, J. H. (1967). Nonlinear environments permitting efficient adaptation. In J. T. Tou (Ed.), Computer and information sciences II. New York: Academic Press.

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

  • Holland, J. H. (1976). Adaptation. In R. Rosen & F. M. Snell (Eds.), Progress in theoretical biology IV (pp. 263--293). New York: Academic Press.

  • Holland, J. H. & Holyoak, K. J. (1989). Induction: Processes of inference, learning and discovery. Cambridge, Mass.: MIT Press.

  • Holldobler, B. & Wilson, E. O. (1990). The ants. Cambridge, Mass.: Belknap Press of Harvard University Press.

  • Hopcroft, J. E. & Ullman, J. D. (1979). Introduction to automata theory, languages, and computation. Reading, Mass.: Addison-Wesley.

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci., 79(8): 2554--2558.

  • Hopfield, J. J. & Tank, D. W. (August 1986). Computing with neural networks: A model. Science, 233(4764): 625--633.

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5): 359--366.

  • Isenberg, C. (1978). The science of soap films and soap bubbles. Avon, U.K.: Tiero.

  • Judd, J. S. (1990). Neural network design and the complexity of learning. Cambridge, Mass.: MIT Press.

  • Kaelbling, L. P. (Ed.). (1996). Recent advances in reinforcement learning. Boston: Kluwer Academic.

  • Kauffman, S. (August 1991). Antichaos and adaptation. Sci. Am., 265(2): 64--70.

  • Kauffman, S. (1995). At home in the universe: The search for laws of self-organization and complexity. Oxford: Oxford University Press.

  • Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22(3): 437--467.

  • Kauffman, S. A. (1984). Emergent properties in random complex automata. Physica D, 10(1--2): 145--56.

  • Kauffman, S. A. (1986). Autocatalytic sets of proteins. J. Theor. Biol., 119(1): 1--24.

  • Kauffman, S. A. (1993). Origins of order: Self-organization and selection in evolution. Oxford: Oxford University Press.

  • Kauffman, S. A. & Smith, R. G. (1986). Adaptive automata based on Darwinian selection. Physica D, 22(1--3): 68--82.

  • Kirchgraber, U. & Stoffer, D. (1990). Chaotic behaviour in simple dynamical systems. SIAM Review, 32(3): 424--452.

  • Kohonen, T. (1977). Associative memory. Berlin: Springer-Verlag.

  • Koiran, P., Cosnard, M., & Garzon, M. (1994). Computability with low-dimensional dynamical systems. Theoret. Comp. Sci., 132(1): 113--128.

  • Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Prob. Info. Trans., 1(1): 1--7.

  • Kolmogorov, A. N. (1968). Some theorems on algorithmic entropy and the algorithmic quantity of information. UMN: Uspekhi Matematicheskikh Nauk, 23.

  • Koza, J. R. (1992). Genetic programming: On the programming of computers by natural selection. Cambridge, Mass.: MIT Press.

  • Kuang, Y. (1993). Delay differential equations with applications in population dynamics. New York: Academic Press.

  • Langton, C. (1984). Self-reproduction in cellular automata. Physica D, 10(1--2): 135--144.

  • Langton, C. (1986). Studying artificial life with cellular automata. Physica D, 22(1--3): 120--149.

  • Langton, C. G. (Ed.). (1989). Artificial Life, volume 6 of Santa Fe Institute studies in the sciences of complexity, Reading, Mass. Addison-Wesley.

  • Langton, C. G., Taylor, C., Farmer, J. D., & Rasmussen, S. (Eds.). (1992). Artificial Life II, volume 10 of Santa Fe Institute studies in the sciences of complexity, Reading, Mass. Addison-Wesley.

  • Lapedes, A. & Farber, R. (1987). Nonlinear signal processing using neural networks: Prediction and system modelling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, N.M.

  • Lapedes, A. & Farber, R. (1988). How neural nets work. In D. Z. Anderson (Ed.), Neural information processing sytems (pp. 442--456). New York: American Institute of Physics.

  • Levy, S. (1992). Artificial life: A report from the frontier where computers meet biology. New York: Vintage Books.

  • Li, T. Y. & Yorke, J. A. (1975). Period three implies chaos. Am. Math. Monthly, 82(10): 985--992.

  • Li, W., Packard, N., & Langton, C. G. (1990). Transition phenomena in CA rule space. Physica D, 45(1--3): 77--94.

  • Lin, L.-J. & Mitchell, T. M. (1992). Memory approaches to reinforcement learning in non-Markovian domains. Technical Report CMU//CS-92-138, Carnegie Mellon University, School of Computer Science, Pittsburgh, Pa.

  • Lindenmayer, A. (1968). Mathematical models for cellular interactions in development, I & II. J. Theor. Biol., 18: 280--315.

  • Lindenmayer, A. & Rozenberg, G. (1972). Developmental systems and languages. In Conference record, fourth annual ACM symposium on theory of computing, (pp. 214--221)., Denver, Colorado.

  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci., 20: 130--141.

  • Lotka, A. (1910). Zur theorie der periodischen reaktionen. Z. phys. Chemie, 72: 508.

  • Lovelock, J. E. (1983). Daisy World: A cybernetic proof of the Gaia hypothesis. CoEvol. Quart., 38(summer): 66--72.

  • Lumsden, C. J. & Wilson, E. O. (1981). Genes, mind, and culture: The coevolutionary process. Cambridge: Harvard University Press.

  • Mackey, M. C. & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 2(4300): 287--289.

  • MacRae, N. (1992). John von Neumann: The scientific genius who pioneered the modern computer, game theory, nuclear deterrence, and much more. New York: Pantheon Books.

  • Mandelbrot, B. (1978). Fractals: Form, chance, and dimension. New York: W. H. Freeman.

  • Mandelbrot, B. (1983). The fractal geometry of nature. New York: W. H. Freeman.

  • March, R. H. (1995). Physics for poets. New York: McGraw-Hill.

  • Margolus, N. (1984). Physics-like models of computation. Physica D, 10(1--2): 81--95.

  • Margulis, L. (1981). Symbiosis in cell evolution. San Francisco: W. H. Freeman.

  • May, R. M. (1972). Limit cycles in predator-prey communities. Science, 177: 900--902.

  • May, R. M. (1974). Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos. Science, 186(4164): 645--647.

  • May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560): 459--467.

  • Mayer-Kress, G. (1992). Nonlinear dynamics and chaos in arms race models. In L. Lam & V. Naroditsky (Eds.), Modeling complex phenomena (pp. 153--183). Berlin: Springer.

  • Maynard Smith, J. (1975). The theory of evolution (third ed.). New York: Penguin.

  • Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.

  • Maynard Smith, J. (1986). The problems of biology. Oxford: Oxford University Press.

  • McCarthy, J. (1960). LISP 1 programmer's manual. Technical report, Computation Center and Research Laboratory of Electronics, MIT, Cambridge, Mass.

  • McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the idea immanent in nervous activity. Bull. Math. Biophys., 5: 115--133.

  • Meinhardt, H. (1995). The algorithmic beauty of sea shells. New York: Springer.

  • Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. New York: Springer-Verlag.

  • Minsky, M. (1972). Computation: Finite and infinite machines. London: Prentice-Hall.

  • Minsky, M. (1979). The society theory of thinking. In P. H. Winston & R. H. Brown (Eds.), Artificial intelligence: An MIT persective (pp. 423--450). Cambridge, Mass.: MIT Press.

  • Minsky, M. (1987). The society of mind. London: Heinemann.

  • Minsky, M. & Papert, S. (1988). Perceptrons (expanded ed.). Cambridge, Mass.: MIT Press.

  • Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, Mass.: MIT Press.

  • Moore, C. (1990). Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett., 64(20): 2354--2357.

  • Moore, C. (1991a). Generalized one-sided shifts and maps of the interval. Nonlinearity, 4(3): 727--745.

  • Moore, C. (1991b). Generalized shifts: Unpredictability and undecidability in dynamical systems. Nonlinearity, 4(2): 199--230.

  • Moore, C. (1996). Recursion theory on the reals and continuous-time computation. Theor. Comp. Sci., 162(1): 23--44.

  • Nicolis, G. & Prigogine, I. (1977). Self-organization in nonequilibrium systems. New York: John Wiley & Sons.

  • Nijhout, H. F. (November 1981). The color patterns of butterflies and moths. Sci. Am., 245(5).

  • Nilsson, N. J. (1965). Learning machines: Foundations of trainable pattern classifying systems. New York: McGraw-Hill.

  • Nowak, M. & Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms Tit-for-Tat in the Prisoner's Dilemma game. Nature, 364(6432): 56--58.

  • Nowak, M. A. & May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359(6398): 826--829.

  • Nowak, M. A., May, R. M., & Sigmund, K. (June 1995). The arithmetics of mutual help. Sci. Am., 272(6): 76--81.

  • Omohundro, S. (1984). Modelling cellular automata with partial differential equations. Physica D, 10D(1--2): 128--134.

  • Ore, O. (1988). Number theory and its history. New York: Dover.

  • O'Rourke, J. (1994). Computational geometry in C. Cambridge: Cambridge University Press.

  • Ott, E., Grebogi, C., & Yorke, J. A. (1990a). Controlling chaos. Phys. Rev. Lett., 64(11): 1196--1199.

  • Ott, E., Grebogi, C., & Yorke, J. A. (1990b). Controlling chaotic dynamical systems. In D. K. Campbell (Ed.), Chaos---Soviet-American perspectives on nonlinear science (pp. 153--172). New York: AIP.

  • Ott, E., Sauer, T., & Yorke, J. A. (1994). Coping with chaos. New York: Wiley.

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

  • Peitgen, H.-O., Jürgens, H., & Saupe, D. (1992). Chaos and fractals. New York: Springer-Verlag.

  • Penrose, R. (1989). The emperor's new mind. Oxford: Oxford University Press.

  • Pickover, C. A. (1991). Computers, pattern, chaos and beauty: Graphics from an unseen world. New York: St. Martin's Press.

  • Poincaré, H. (1890). Sur les équations de la dynamique et le problème de trois corps. Acta Math., 13: 1--270.

  • Poincaré, H. (1952). Science and hypothesis. New York: Dover.

  • Poundstone, W. (1985). The recursive universe. New York: William Morrow.

  • Poundstone, W. (1992). Prisoner's Dilemma. New York: Doubleday.

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical recipes. Cambridge: Cambridge University Press.

  • Prusinkiewicz, P., Lindenmayer, A., Hanan, J. S., et al. (1990). The algorithmic beauty of plants. New York: Springer-Verlag.

  • Rand, D. A. (1994). Measuring and characterizing spatial patterns, dynamics and chaos in spatially extended dynamical systems and cologies. Philos. Trans. Roy. Soc. A, 348(1688): 497--514.

  • Rand, D. A. & Wilson, H. (1995). Using spatio-temporal chaos and intermediate-scale determinism to quantify spatially-extended ecosystems. Proc. R. Soc. Lond. B, 259(1355): 111--117.

  • Rapoport, A. & Chammah, A. M. (1965). Prisoner's Dilemma. Ann Arbor: University of Michigan Press.

  • Rechenberg, I. (1973). Evolution strategy: Optimization of technical systems by means of biological evolution. Stuttgart: Fromman-Holzboog.

  • Resnick, M. (1988). LEGO, logo, and life. In C. Langton (Ed.), Artificial life (pp. 397--406). Reading, Mass.: Addison-Wesley.

  • Resnick, M. (1994). Turtles, termites, and traffic jams: Explorations in massively parallel microworlds. Cambridge, Mass.: Bradford Books/MIT Press.

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Comp. Graph., 21(4): 25--34.

  • Ribenboim, P. (1991). The little book of big primes. New York: Springer-Verlag.

  • Richardson, L. F. (1961). The problem of contiguity: An appendix of statistics of deadly quarrels. General Systems Yearbook, 6: 139--187.

  • Ridley, M. (1995). The red queen: Sex and the evolution of human nature. New York: Macmillan.

  • Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Washington, D.C.: Spartan Books.

  • Rucker, R. (1995). Infinity and the mind: The science and philosophy of the infinite. Princeton: Princeton University Press.

  • Ruelle, D. (1980). Strange attractors. Math. Intell., 2(3): 126--137.

  • Ruelle, D. (1993). Chance and chaos. Princeton: Princeton University Press.

  • Ruelle, D. & Takens, F. (1971). On the nature of turbulence. Comm. Math. Phys., 20(3): 167--192.

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Parallel distributive processing. Cambridge, Mass.: MIT Press.

  • Sarle, W. S. & Net Poohbahs (1994). Kangaroos and training neural networks. FAQ list available from

  • Schrödinger, E. (1944). What is life? Cambridge: Cambridge University Press.

  • Schroeder, M. (1991). Fractals, chaos, power laws. New York: W. H. Freeman.

  • Schwefel, H.-P. (1977). Numerische optimierung von computer-modellen mittels der evolutionsstrategie. Basel: Birkhäuser.

  • Shaw, E. (1962). The schooling of fishes. Sci. Am., 206: 128--138.

  • Shinbrot, T., Ditto, W., Grebogi, C., Ott, E., Spano, M., & Yorke, J. A. (1992). Using the sensitive dependence of chaos (the ``butterfly effect'') to direct trajectories in an experimental chaotic system. Phys. Rev. Lett., 68(19): 2863--2866.

  • Siegelmann, H. T. & Sontag, E. D. (1991). Turing computability with neural networks. Appl. Math. Let., 4(6): 77--80.

  • Solomonoff, R. J. (1964a). A formal theory of inductive inference: Part I. Info. and Control, 7(1): 1--22.

  • Solomonoff, R. J. (1964b). A formal theory of inductive inference: Part II. Information and Control, 7(1): 224--254.

  • Stanley, H. E. & Ostrowsky, N. (Eds.). (1985). On growth and form: Fractal and non fractal patterns in physics. Kluwer Academic.

  • Sterman, J. D. (1984). Instructions for running the beer distribution game. Technical Report D-3679, System Dynamics Group, MIT, Cambridge, Mass.

  • Sterman, J. D. (1988). Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiemnt. Management Sci., 35(3): 321--339.

  • Stewart, I. (1990). Does God play dice?: The mathematics of chaos. Oxford: Blackwell.

  • Stewart, I. (July 1994). Mathematical Recreations: The ultimate anty-particles. Sci. Am., 271(1): 104--107.

  • Stewart, I. (1995). Nature's numbers: The unreal reality of mathematical imagination. New York: Basic Books.

  • Stewart, I. (1996). From here to infinity. Oxford: Oxford University Press.

  • Stinson, D. R. (1995). Cryptography: Theory and practice. Boca Raton: CRC Press.

  • Strang, G. (1980). Linear algebra and its applications. San Diego: Harcourt Brace Jovanovich.

  • Strogatz, S. (1994). Nonlinear dynamics and chaos. New York: Addison Wesley.

  • Tagliarini, G. A. & Page, E. W. (1987). Solving constraint satisfaction problems with neural networks. In Proceedings of the first international conference on neural networks, San Diego.

  • Takens, F. (1980). Detecting strange attractors in turbulence. In D. A. Rand & L. S. Young (Eds.), Dynamical systems and turbulence (pp. 366--381). New York: Spinger-Verlag.

  • Tank, D. W. & Hopfield, J. J. (December 1987). Collective computation in neuronlike circuits. Sci. Am., 257(6): 104--114.

  • Toffoli, T. (1977). Computation and construction universality of reversible cellular automata. J. Comp. Sys. Sci., 15(2): 213--231.

  • Toffoli, T. (1984). Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D, 10(1--2): 117--127.

  • Toffoli, T. & Margolus, N. (1987). Cellular automata machines. London: MIT Press.

  • Tomita, K. & Tsuda, I. (1979). Chaos in Belousov-Zhabotinskii reaction in a flow system. Phys. Lett. A, 71(5--6): 489.

  • Tu, P. N. V. (1992). Dynamical systems: An introduction with applications in economics and biology. Berlin: Springer-Verlag.

  • Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc., 2(42): 230--265.

  • Turing, A. M. (1950). Can a machine think? Mind, 59(236): 433--460.

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, B(237): 37--72.

  • Turing, A. M. (1963). Computing machinery and intelligence. In E. A. Feigenbaum (Ed.), Computers and Thought. New York: McGraw-Hill.

  • Ulam, S. M. (1962). On some mathematical problems connected with patterns of growth of figures. Proc. Symposia Appl. Math., 14: 215--224.

  • Ulam, S. M. & von Neumann, J. (1947). On combinations of stochastic and deterministic processes. Bull. Am. Math. Soc., 53: 1120.

  • Vanecek, A. & Celikovsky, S. (1996). Control systems: From linear analysis to synthesis of chaos. New York: Prentice-Hall.

  • von Neumann, J. (1958). The computer and the brain. New Haven: Yale University Press.

  • von Neumann, J. (1966). Theory of self-reproducing automata. Urbana: University of Illinois Press.

  • von Neumann, J. & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.

  • Waldrop, M. M. (1992). Complexity: The emerging science at the edge of order and chaos. New York: Simon & Schuster.

  • Wang, H. (1987). Reflections on Kurt Gödel. Cambridge, Mass.: MIT Press.

  • Wassermann, G. D. (1997). From Occam's Razor to the roots of consciousness: 20 essays on philosophy, philosophy of science and philosophy of mind. Avebury.

  • Watson, J. D. (1991). The double helix: A personal account of the discovery of the structure of DNA. New York: New American Library.

  • Weinberg, R. (1970). Computer simulation of a primitive, evolving eco-system. Technical Report 03296-6-T, University of Michigan, Ann Arbor.

  • Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, Mass.

  • Wesson, R. (1991). Beyond natural selection. Cambridge, Mass.: Bradford Books/MIT Press.

  • Whitehead, A. N. & Russell, B. (1910). Principia mathematica. Cambridge: Cambridge University Press.

  • Whitehead, S. D. & Lin, L.-J. (1995). Reinforcement learning of a non-Markov decision process. Art. Intell., 73(1--2): 271--306.

  • Wickler, W. (1968). Mimicry in plants and animals. New York: World University Library.

  • Wiener, N. (1948). Cybernetics, or control and communication in the animal and the machine. New York: John Wiley.

  • Wills, C. (1989). The wisdom of the genes. New York: Basic Books.

  • Wilson, E. O. (1971). The insect societies. Cambridge, Mass.: Belknap Press of Harvard University Press.

  • Wilson, E. O. (1975). Sociobiology: The new synthesis. Cambridge, Mass.: Belknap Press of Harvard University Press.

  • Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evol. Comp., 2(1): 1--18.

  • Wolfram, S. (1983). Statistical mechanics of cellular automata. Rev. Mod. Phys., 55(3): 601--644.

  • Wolfram, S. (1984a). Cellular automata as models of complexity. Nature, 311(4): 419--424.

  • Wolfram, S. (1984b). Computation theory of cellular automata. Comm. Math. Phys., 96(1): 15--57.

  • Wolfram, S. (1984c). Universality and complexity in cellular automata. Physica D, 10(1--2): 1--35.

  • Wolfram, S. (Ed.). (1986). Theory and applications of cellular automata. Singapore: World Scientific.

  • Wolfram, S. (1994). Cellular automata and complexity. Reading, Mass.: Addison-Wesley.

  • Wolpert, D. H. & Macready, W. G. (1995). No free lunch theorems for search. Technical Report SFI-TR-95-02-010, The Santa Fe Institute, Santa Fe, N.M.
Copyright © Gary William Flake, 1998-2002. All Rights Reserved. Last modified: 30 Nov 2002