Skip navigation
DOI: http://dx.doi.org/10.7551/978-0-262-31709-2-ch064
Pages 446-453
First published 2 September 2013

The Influence of Cell Type on Artificial Development

John Maher, Fearghal Morgan, Colm O'Riordan, Brian McGinley

Abstract

Two variants of biologically inspired cell model, namely eukaryotic (containing a nucleus) and prokaryotic (without a nucleus) are compared in this research. Experiments are designed to provide an understanding of how the evolved regulation of protein transport to and from the nucleus of the eukaryotic type cell gives rise to complex temporal dynamics that are not achievable in a prokaryoticcell.

A novel system of protein movement based on the process of nucleocytoplasmic transport observed in the biological eukaryotic cell is proposed. Nucleocytoplasmic transport is considered by biologists to be one of the most important factors when determining the developmental trajectory of a cell, as it allows for additional control of transcription factors entering the nucleus, thereby regulating gene activity.

Experiments contrast the ability of both cell models to generate protein patterns within the cytoplasm. Results demonstrate that the additional cell complexity of the eukaryotic does not impede the Gene Regulatory Networks control. For increasingly difficult tasks requiring precise temporal control the performance of the eukaryotic cell model outperforms the prokaryoticcell model. In addition, results demonstrate that the second level of regulation introduced by the transport process within the eukaryotic cell allows very precise control of gene activity and provides the EA with a source of heterochronic control not possible in prokaryotictype cells.