Skip navigation

Ashwin Ram

Titles by This Editor

Computational Models of Reading

This book highlights cutting-edge research relevant to the building of a computational model of reading comprehension, as in the processing and understanding of a natural language text or story. A distinguishing feature of the book is its emphasis on "real" understanding of "real" narrative texts rather than on syntactic parsing of single sentences taken out of context or on limited understanding of small, researcher-constructed stories.

The book takes an interdisciplinary approach to the study of reading, with contributions from computer science, psychology, and philosophy. Contributors cover the theoretical and psychological foundations of the research in discussions of what it means to understand a text, how one builds a computational model, and related issues in knowledge representation and reasoning. The book also addresses some of the broader issues that a natural language system must deal with, such as reading in context, linguistic novelty, and information extraction.

Dorrit Billman, Michael T. Cox, Eric Domeshek, Kurt Eiselt, Charles R. Fletcher, Richard Gerrig, Jennifer Holbrook, Eric Jones, Trent Lange, Mark Langston, Joe Magliano, Kavi Mahesh, Bonnie J. F. Meyer, Justin Peterson, William J. Rapaport, Ellen Riloff, Stuart C. Shapiro, Tom Trabasso, Charles M. Wharton.

Edited by Ashwin Ram and David Leake

In cognitive science, artificial intelligence, psychology, and education, a growing body of research supports the view that the learning process is strongly influenced by the learner's goals. The fundamental tenet of goal-driven learning is that learning is largely an active and strategic process in which the learner, human or machine, attempts to identify and satisfy its information needs in the context of its tasks and goals, its prior knowledge, its capabilities, and environmental opportunities for learning. This book brings together a diversity of research on goal-driven learning to establish a broad, interdisciplinary framework that describes the goal-driven learning process. It collects and solidifies existing results on this important issue in machine and human learning and presents a theoretical framework for future investigations.

The book opens with an an overview of goal-driven learning research and computational and cognitive models of the goal-driven learning process. This introduction is followed by a collection of fourteen recent research articles addressing fundamental issues of the field, including psychological and functional arguments for modeling learning as a deliberative, planful process; experimental evaluation of the benefits of utility-based analysis to guide decisions about what to learn; case studies of computational models in which learning is driven by reasoning about learning goals; psychological evidence for human goal-driven learning; and the ramifications of goal-driven learning in educational contexts.

The second part of the book presents six position papers reflecting ongoing research and current issues in goal-driven learning. Issues discussed include methods for pursuing psychological studies of goal-driven learning, frameworks for the design of active and multistrategy learning systems, and methods for selecting and balancing the goals that drive learning.

A Bradford Book