Skip navigation

Laurent Michel

Laurent Michel is Assistant Professor in the Department of Computer Science and Engineering at the University of Connecticut.

Titles by This Author

The ubiquity of combinatorial optimization problems in our society is illustrated by the novel application areas for optimization technology, which range from supply chain management to sports tournament scheduling. Over the last two decades, constraint programming has emerged as a fundamental methodology to solve a variety of combinatorial problems, and rich constraint programming languages have been developed for expressing and combining constraints and specifying search procedures at a high level of abstraction.

A Modeling Language for Global Optimization

Many science and engineering applications require the user to find solutions to systems of nonlinear constraints or to optimize a nonlinear function subject to nonlinear constraints. The field of global optimization is the study of methods to find all solutions to systems of nonlinear constraints and all global optima to optimization problems. Numerica is modeling language for global optimization that makes it possible to state nonlinear problems in a form close to the statements traditionally found in textbooks and scientific papers.