Skip navigation

Leo M. Chalupa

Leo M. Chalupa is Vice President for Research and Professor of Pharmacology and Physiology at George Washington University. 

Titles by This Editor

Visual science is the model system for neuroscience, its findings relevant to all other areas. This essential reference to contemporary visual neuroscience covers the extraordinary range of the field today, from molecules and cell assemblies to systems and therapies. It provides a state-of-the art companion to the earlier book The Visual Neurosciences (MIT Press, 2003). This volume covers the dramatic advances made in the last decade, offering new topics, new authors, and new chapters.

The New Visual Neurosciences assembles groundbreaking research, written by international authorities. Many of the 112 chapters treat seminal topics not included in the earlier book. These new topics include retinal feature detection; cortical connectomics; new approaches to mid-level vision and spatiotemporal perception; the latest understanding of how multimodal integration contributes to visual perception; new theoretical work on the role of neural oscillations in information processing; and new molecular and genetic techniques for understanding visual system development. An entirely new section covers invertebrate vision, reflecting the importance of this research in understanding fundamental principles of visual processing. Another new section treats translational visual neuroscience, covering recent progress in novel treatment modalities for optic nerve disorders, macular degeneration, and retinal cell replacement. The New Visual Neurosciences is an indispensable reference for students, teachers, researchers, clinicians, and anyone interested in contemporary neuroscience.

Associate Editors
Marie Burns, Joy Geng, Mark Goldman, James Handa, Andrew Ishida, George R. Mangun, Kimberley McAllister, Bruno Olshausen, Gregg Recanzone, Mandyam Srinivasan, W.Martin Usrey, Michael Webster, David Whitney

Sections
Retinal Mechanisms and Processes
Organization of Visual Pathways
Subcortical Processing
Processing in Primary Visual Cortex
Brightness and Color
Pattern, Surface, and Shape
Objects and Scenes
Time, Motion, and Depth
Eye Movements
Cortical Mechanisms of Attention, Cognition, and Multimodal Integration
Invertebrate Vision
Theoretical Perspectives
Molecular and Developmental Processes
Translational Visual Neuroscience

New Perspectives

The notion that neurons in the living brain can change in response to experience—a phenomenon known as "plasticity"—has become a major conceptual issue in neuroscience research as well as a practical focus for the fields of neural rehabilitation and neurodegenerative disease. Early work dealt with the plasticity of the developing brain and demonstrated the critical role played by sensory experience in normal development. Two broader themes have emerged in recent studies: the plasticity of the adult brain (one of the most rapidly developing areas of current research) and the search for the underlying mechanisms of plasticity—explanations for the cellular, molecular, and epigenetic factors controlling plasticity. Many scientists believe that achieving a fundamental understanding of what underlies neuronal plasticity could help us treat neurological disorders and even improve the learning capabilities of the human brain.

This volume offers contributions from leaders in the field that cover all three approaches to the study of cerebral plasticity. Chapters treat normal development and the influences of environmental manipulations; cerebral plasticity in adulthood; and underlying mechanisms of plasticity. Other chapters deal with plastic changes in neurological conditions and with the enhancement of plasticity as a strategy for brain repair.

Recent years have seen a burst of studies on the mouse eye and visual system, fueled in large part by the relatively recent ability to produce mice with precisely defined changes in gene sequence. Mouse models have contributed to a wide range of scientific breakthroughs for a number of ocular and neurological diseases and have allowed researchers to address fundamental issues that were difficult to approach with other experimental models. This comprehensive guide to current research captures the first wave of studies in the field, with fifty-nine chapters by leading scholars that demonstrate the usefulness of mouse models as a bridge between experimental and clinical research.

The opening chapters introduce the mouse as a species and research model, discussing such topics as the mouse's evolutionary history and the mammalian visual system. Subsequent sections explore more specialized subjects, considering optics, psychophysics, and the visual behaviors of mice; the organization of the adult mouse eye and central visual system; the development of the mouse eye (including comparisons to human development); the development and plasticity of retinal projections and visuotopic maps; mouse models for human eye disease (including glaucoma and cataracts); and the application of advanced genomic technologies (including gene therapy and genetic knockouts) to the mouse visual system. Readers of this reference will see that the study of mouse models has already demonstrated real translational prowess in vision research.

Visual science is the model system for neuroscience, its findings relevant to all other areas. This massive collection of papers by leading researchers in the field will become an essential reference for researchers and students in visual neuroscience, and will be of importance to researchers and professionals in other disciplines, including molecular and cellular biology, cognitive science, ophthalmology, psychology, computer science, optometry, and education.

Over 100 chapters cover the entire field of visual neuroscience, from its historical foundations to the latest research and findings in molecular mechanisms and network modeling. The book is organized by topic—different sections cover such subjects as the history of vision science; developmental processes; retinal mechanisms and processes; organization of visual pathways; subcortical processing; processing in the primary visual cortex; detection and sampling; brightness and color; form, shape,and object recognition; motion, depth, and spatial relationships; eye movements; attention and cognition; and theoretical and computational perspectives. The list of contributors includes leading international researchers in visual science.