Skip navigation
Hardcover | $34.00 Short | £23.95 | ISBN: 9780262141055 | 272 pp. | 6 x 9 in | 54 figures| August 2008
 
Paperback | $17.00 Short | £11.95 | ISBN: 9780262515078 | 272 pp. | 6 x 9 in | 54 figures| August 2010
 

"“University Presses in Space” showcases a special sampling of the many works that university presses have published about space and space exploration."

Essential Info

Creating Scientific Concepts

Overview

How do novel scientific concepts arise? In Creating Scientific Concepts, Nancy Nersessian seeks to answer this central but virtually unasked question in the problem of conceptual change. She argues that the popular image of novel concepts and profound insight bursting forth in a blinding flash of inspiration is mistaken. Instead, novel concepts are shown to arise out of the interplay of three factors: an attempt to solve specific problems; the use of conceptual, analytical, and material resources provided by the cognitive-social-cultural context of the problem; and dynamic processes of reasoning that extend ordinary cognition.

Focusing on the third factor, Nersessian draws on cognitive science research and historical accounts of scientific practices to show how scientific and ordinary cognition lie on a continuum, and how problem-solving practices in one illuminate practices in the other. Her investigations of scientific practices show conceptual change as deriving from the use of analogies, imagistic representations, and thought experiments, integrated with experimental investigations and mathematical analyses. She presents a view of constructed models as hybrid objects, serving as intermediaries between targets and analogical sources in bootstrapping processes. Extending these results, she argues that these complex cognitive operations and structures are not mere aids to discovery, but that together they constitute a powerful form of reasoning—model-based reasoning—that generates novelty. This new approach to mental modeling and analogy, together with Nersessian's cognitive-historical approach, makes Creating Scientific Concepts equally valuable to cognitive science and philosophy of science.

A Bradford Book

About the Author

Regents’ Professor of Cognitive Science, School of Interactive Computing, Georgia Institute of Technology Nancy Nersessian’s research focuses on creativity, innovation and conceptual change in science. She examines the cognitive and cultural mechanisms that precede theoretical and experimental scientific innovation. She holds an A.B. in Physics and Philosophy from Boston University and M.A. and Ph.D. degrees in Philosophy from Case Western Reserve University . Professor Nersessian is currently a Fellow of the American Association for the Advancement of Science and a member (foreign) of the Royal Netherlands Academy of Arts and Sciences. She has held fellowship positions at the Radcliffe Institute for Advanced Study (Harvard), the Dibner Institute at MIT, the Pittsburgh Center for the Philosophy of Science, the Netherlands Institute for Advanced Study, and the University of Leiden, the Netherlands (Fulbright Scholar). She has also served as the Chair of the Cognitive Science Society (2003-4) and on its Governing Board, and as a Governing Board member of the Philosophy of Science Association.

Endorsements

"It should be obvious: Scientists are human beings and their scientific theories reflect normal human mechanisms of thought, called frames and metaphors by some cognitive scientists and models and analogies by others. James Clerk Maxwell was no exception. His laws of electromagnetism were structured by those forms of human cognition. In Creating Scientific Concepts, Nancy Nersessian demonstrates this beyond question. The book is a tour de force by a great cognitive scientist of science."
George Lakoff, Richard and Rhoda Goldman Distinguished Professor of Cognitive Science and Linguistics, The University of California at Berkeley

"In research of major importance, Nancy Nersessian has shown how mentalmodels underlie the creative reasoning of scientists. At the heart of herbook is a unique and imaginative use of cognitive science to explain how anincremental series of models led James Clerk Maxwell to his field equationsfor electromagnetism."
Philip Johnson-Laird, Department of Psychology, Princeton University

"Drawing on years of experience as a founder of cognitive studies ofscience, Nersessian tackles a fundamental problem neglected by pastinquiries into conceptual change: How can a genuinely novel representationbe created? This can be done, she argues, by a process of model-basedreasoning involving such activities as creating analogies, deploying visualrepresentations, and performing thought experiments. In developing her caseshe draws on her own 'cognitive-historical method' which combines detailedhistorical analysis with insights from cognitive science. The result speaksto the interests of historians, philosophers, and sociologists of science,and many others, including cognitive scientists."
Ronald N. Giere, Center for Philosophy of Science, University of Minnesota

Awards

Winner of the 2011 Patrick Suppes Prize in Philosophy of Science