Skip navigation
Hardcover | $40.00 Text | £27.95 | ISBN: 9780262062022 | 211 pp. | 6.2 x 9 in | July 1998
 

"“University Presses in Space” showcases a special sampling of the many works that university presses have published about space and space exploration."

Graphical Models for Machine Learning and Digital Communication

Overview


A variety of problems in machine learning and digital communication deal with complex but structured natural or artificial systems. In this book, Brendan Frey uses graphical models as an overarching framework to describe and solve problems of pattern classification, unsupervised learning, data compression, and channel coding. Using probabilistic structures such as Bayesian belief networks and Markov random fields, he is able to describe the relationships between random variables in these systems and to apply graph-based inference techniques to develop new algorithms. Among the algorithms described are the wake-sleep algorithm for unsupervised learning, the iterative turbodecoding algorithm (currently the best error-correcting decoding algorithm), the bits-back coding method, the Markov chain Monte Carlo technique, and variational inference.