Skip navigation
Hardcover | $55.00 Short | £45.95 | 288 pp. | 7 x 9 in | 21 color illus., 29 b&w illus. | February 2018 | ISBN: 9780262037792
Mouseover for Online Attention Data

Machine Learning for Data Streams

with Practical Examples in MOA


Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

About the Authors

Albert Bifet is Professor of Computer Science at Télécom ParisTech.

Ricard Gavaldà is Professor of Computer Science at the Politècnica de Catalunya, Barcelona.

Geoff Holmes is Professor and Dean of Computing at the University of Waikato in Hamilton, New Zealand.

Bernhard Pfahringer is Professor of Computer Science at the University of Auckland, New Zealand.


“An excellent introduction to stream data analytics from the Big Data perspective. Clear and lucid presentation of state of the art methods for working with data in motion. It brings a fresh, unique focus on sketches, often overlooked in monographs, as well as its highly practical, hands-on grounding in the open-source MOA system. Not to be missed by anyone with serious interest in Big Data and Data Science.”
Stan Matwin, Canada Research Chair and Director, Institute for Big Data Analytics, Dalhousie University; Distinguished Professor at the University of Ottawa, Canada; State Professor at the Institute for Computer Science of the Polish Academy of Sciences; Area Chair for Applications of the Springer Encyclopedia of Machine Learning