Machine Learning for Data Streams

From Adaptive Computation and Machine Learning series

Machine Learning for Data Streams

with Practical Examples in MOA

By Albert Bifet, Ricard Gavaldà, Geoff Holmes and Bernhard Pfahringer

A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.

Overview

Author(s)

Praise

Summary

A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.

Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Hardcover

$55.00 S ISBN: 9780262037792 288 pp. | 7 in x 9 in 21 color illus., 29 b&w illus.

Endorsements

  • An excellent introduction to stream data analytics from the Big Data perspective. Clear and lucid presentation of state of the art methods for working with data in motion. It brings a fresh, unique focus on sketches, often overlooked in monographs, as well as its highly practical, hands-on grounding in the open-source MOA system. Not to be missed by anyone with serious interest in Big Data and Data Science.

    Stan Matwin

    Canada Research Chair and Director, Institute for Big Data Analytics, Dalhousie University; Distinguished Professor at the University of Ottawa, Canada; State Professor at the Institute for Computer Science of the Polish Academy of Sciences; Area Chair for Applications of the Springer Encyclopedia of Machine Learning