Skip navigation
Hardcover | $60.00 X | £49.95 | 448 pp. | 7 x 9 in | 103 color illus. | August 2016 | ISBN: 9780262034906
eBook | $60.00 X | July 2016 | ISBN: 9780262337458
Mouseover for Online Attention Data

Look Inside

A Primer in Econometric Theory

Overview

This book offers a cogent and concise treatment of econometric theory and methods along with the underlying ideas from statistics, probability theory, and linear algebra. It emphasizes foundations and general principles, but also features many solved exercises, worked examples, and code listings. After mastering the material presented, readers will be ready to take on more advanced work in different areas of quantitative economics and to understand papers from the econometrics literature. The book can be used in graduate-level courses on foundational aspects of econometrics or on fundamental statistical principles. It will also be a valuable reference for independent study.

One distinctive aspect of the text is its integration of traditional topics from statistics and econometrics with modern ideas from data science and machine learning; readers will encounter ideas that are driving the current development of statistics and increasingly filtering into econometric methodology. The text treats programming not only as a way to work with data but also as a technique for building intuition via simulation. Many proofs are followed by a simulation that shows the theory in action. As a primer, the book offers readers an entry point into the field, allowing them to see econometrics as a whole rather than as a profusion of apparently unrelated ideas.

About the Author

John Stachurski is Professor of Economics at the Australian National University and the author of Economic Dynamics: Theory and Computation (MIT Press).

Endorsements

“This important book fills a gap in the existing curriculum by providing a firm foundation in linear algebra, statistics, and coding for students who want to study advanced econometrics. And there's more: it also exposes students to methods of machine learning and computational statistics, offering a broader perspective on modern data analytic techniques.”
Hal Varian, Chief Economist, Google
A Primer in Econometric Theory presents key foundations and supplements them with good examples. It vividly shows the benefits given to us by decades of technical progress in econometrics and computational methods. Stachurski’s writing style presents technical arguments in attractive and accessible ways.”
Thomas J. Sargent, New York University
“John Stachurski's text, A Primer in Econometric Theory is a concise and elegant book that provides a more conceptual introduction to econometrics that coincides well with my own preferred way of teaching the subject to first-year graduate students. It is clear, rigorous, and provides a large number of interesting exercises with solutions. I will use it in my own econometrics teaching and recommend it to complement other applied econometrics books.”
John Rust, Gallagher Family Professor of Economics, Georgetown University
“When I learned the fundamentals of linear algebra and economic theory as a graduate student, I found most textbooks and courses had an emphasis on theory but very little in terms of software. The emphasis on teaching these ideas through modern programming tools such as Julia, Python, and R not only makes the material far more accessible but also equips the readers of this book for their professional careers. I wish I had such a book when I was in grad school!”
Viral Shah, Co-inventor of Julia programming language, Co-founder of Julia Computing, Co-author of Rebooting India