Skip navigation

Programming and Programming Languages

  • Page 1 of 5
Learn to Program While Solving Puzzles

This book builds a bridge between the recreational world of algorithmic puzzles (puzzles that can be solved by algorithms) and the pragmatic world of computer programming, teaching readers to program while solving puzzles. Few introductory students want to program for programming’s sake. Puzzles are real-world applications that are attention grabbing, intriguing, and easy to describe.

What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs.

A Computer-Based Approach

Proof is the primary vehicle for knowledge generation in mathematics. In computer science, proof has found an additional use: verifying that a particular system (or component, or algorithm) has certain desirable properties. This book teaches students how to read and write proofs using Athena, a freely downloadable computer language. Athena proofs are machine-checkable and written in an intuitive natural-deduction style. The book contains more than 300 exercises, most with full solutions.

The Palladio Approach

Too often, software designers lack an understanding of the effect of design decisions on such quality attributes as performance and reliability. This necessitates costly trial-and-error testing cycles, delaying or complicating rollout. This book presents a new, quantitative architecture simulation approach to software design, which allows software engineers to model quality of service in early design stages.

With Application to Understanding Data

This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data.

Principles and Best Practice

This book addresses an often-neglected aspect of the creation of VHDL designs. A VHDL description is also source code, and VHDL designers can use the best practices of software development to write high-quality code and to organize it in a design. This book presents this unique set of skills, teaching VHDL designers of all experience levels how to apply the best design principles and coding practices from the software world to the world of hardware.

What Every Research Assistant Should Know

This book offers a practical guide to the computational methods at the heart of most modern quantitative research. It will be essential reading for research assistants needing hands-on experience; students entering PhD programs in business, economics, and other social or natural sciences; and those seeking quantitative jobs in industry. No background in computer science is assumed; a learner need only have a computer with access to the Internet.

This book introduces programming to readers with a background in the arts and humanities; there are no prerequisites, and no knowledge of computation is assumed. In it, Nick Montfort reveals programming to be not merely a technical exercise within given constraints but a tool for sketching, brainstorming, and inquiring about important topics. He emphasizes programming’s exploratory potential—its facility to create new kinds of artworks and to probe data for new ideas.

The third edition of Java Precisely provides a concise description of the Java programming language, version 8.0. It offers a quick reference for the reader who has already learned (or is learning) Java from a standard textbook and who wants to know the language in more detail. The book presents the entire Java programming language and essential parts of the class libraries: the collection classes, the input-output classes, the stream libraries and Java 8’s facilities for parallel programming, and the functional interfaces used for that.

Edited by Pavan Balaji

With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today.

  • Page 1 of 5