Skip navigation

Mathematics and Physics

  • Page 1 of 2

This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems.

We now know that there is much more to classical mechanics than previously suspected. Derivations of the equations of motion, the focus of traditional presentations of mechanics, are just the beginning. This innovative textbook, now in its second edition, concentrates on developing general methods for studying the behavior of classical systems, whether or not they have a symbolic solution. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic.

A Primer

This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra.

Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences.

Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level.

A Gentle Introduction

The combination of two of the twentieth century’s most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, at the most basic level.

A Math Tool Kit

This text offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems.

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming.

The Mathematical Foundations of Music

Volume 2 of Musimathics continues the story of music engineering begun in Volume 1, focusing on the digital and computational domain. Loy goes deeper into the mathematics of music and sound, beginning with digital audio, sampling, and binary numbers, as well as complex numbers and how they simplify representation of musical signals. Chapters cover the Fourier transform, convolution, filtering, resonance, the wave equation, acoustical systems, sound synthesis, the short-time Fourier transform, and the wavelet transform.

The Mathematical Foundations of Music

“Mathematics can be as effortless as humming a tune, if you know the tune,” writes Gareth Loy. In Musimathics, Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music—a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science.

  • Page 1 of 2