Klaus-Robert Müller

Klaus-Robert Müller is Head of the Intelligent Data Analysis group at the Fraunhofer Institute and Professor in the Department of Computer Science at the Technical University of Berlin.

  • Toward Brain-Computer Interfacing

    Toward Brain-Computer Interfacing

    Guido Dornhege, José del R. Millán, Thilo Hinterberger, Dennis J. McFarland, and Klaus-Robert Müller

    The latest research in the development of technologies that will allow humans to communicate, using brain signals only, with computers, wheelchairs, prostheses, and other devices.

    Interest in developing an effective communication interface connecting the human brain and a computer has grown rapidly over the past decade. The brain-computer interface (BCI) would allow humans to operate computers, wheelchairs, prostheses, and other devices, using brain signals only. BCI research may someday provide a communication channel for patients with severe physical disabilities but intact cognitive functions, a working tool in computational neuroscience that contributes to a better understanding of the brain, and a novel independent interface for human-machine communication that offers new options for monitoring and control. This volume presents a timely overview of the latest BCI research, with contributions from many of the important research groups in the field. The book covers a broad range of topics, describing work on both noninvasive (that is, without the implantation of electrodes) and invasive approaches. Other chapters discuss relevant techniques from machine learning and signal processing, existing software for BCI, and possible applications of BCI research in the real world.

    • Hardcover $49.00 £40.00
    • Paperback $60.00 £50.00
  • Advances in Neural Information Processing Systems 12

    Advances in Neural Information Processing Systems 12

    Proceedings of the 1999 Conference

    Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller

    The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.

    • Hardcover $20.75 £16.99
    • Paperback $90.00 £75.00


  • Dataset Shift in Machine Learning

    Dataset Shift in Machine Learning

    Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence

    An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions.

    Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift.

    Contributors Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama

    • Hardcover $45.00 £38.00