Lawrence M. Ward

Lawrence M. Ward is Professor of Psychology at the University of British Columbia.

  • Dynamical Cognitive Science

    Dynamical Cognitive Science

    Lawrence M. Ward

    An introduction to the application of dynamical systems science to the cognitive sciences.

    Dynamical Cognitive Science makes available to the cognitive science community the analytical tools and techniques of dynamical systems science, adding the variables of change and time to the study of human cognition. The unifying theme is that human behavior is an "unfolding in time" whose study should be augmented by the application of time-sensitive tools from disciplines such as physics, mathematics, and economics, where change over time is of central importance.

    The book provides a fast-paced, comprehensive introduction to the application of dynamical systems science to the cognitive sciences. Topics include linear and nonlinear time series analysis, chaos theory, complexity theory, relaxation oscillators, and metatheoretical issues of modeling and theory building. Tools and techniques are discussed in the context of their application to basic cognitive science problems, including perception, memory, psychophysics, judgment and decision making, and consciousness. The final chapter summarizes the contemporary study of consciousness and suggests how dynamical approaches to cognitive science can help to advance our understanding of this central concept.

    • Hardcover $11.75 £9.99

Contributor

  • Brain Signal Analysis

    Brain Signal Analysis

    Advances in Neuroelectric and Neuromagnetic Methods

    Todd C. Handy

    Recent developments in the tools and techniques of data acquisition and analysis in cognitive electrophysiology.

    Cognitive electrophysiology concerns the study of the brain's electrical and magnetic responses to both external and internal events. These can be measured using electroencephalograms (EEGs) or magnetoencephalograms (MEGs). With the advent of functional magnetic resonance imaging (fMRI), another method of tracking brain signals, the tools and techniques of ERP, EEG and MEG data acquisition and analysis have been developing at a similarly rapid pace, and this book offers an overview of key recent advances in cognitive electrophysiology. The chapters highlight the increasing overlap in EEG and MEG analytic techniques, describing several methods applicable to both; they discuss recent developments, including reverse correlation methods in visual-evoked potentials and a new approach to topographic mapping in high-density electrode montage; and they relate the latest thinking on design aspects of EEG/MEG studies, discussing how to optimize the signal-to-noise ratio as well as statistical developments for maximizing power and accuracy in data analysis using repeated-measure ANOVAS.

    Contributors Denis Brunet, Douglas Cheyne, Marzia De Lucia, Sam M. Doesburg, John J. Foxe, Karl J. Friston, Marta I. Garrido, Sara L. Gonzalez Andino, Rolando Grave de Peralta Menendez, Jessica J. Green, Todd C. Handy, Anthony T. Herdman, Stefan J. Kiebel, Edmund C. Lalor, Theodor Landis, Teresa Y. L. Liu-Ambrose, John. J. McDonald, Christoph M. Michel, Marla J. S. Mickleborough, Micah M. Murray, Lindsay S. Nagamatsu, Barak A. Pearlmutter, Durk Talsma, Gregor Thut, Anne-Laura van Harmelen, Lawrence M. Ward

    • Hardcover $19.75 £15.99