Volnei A. Pedroni

Volnei A. Pedroni is Professor of Electrical Engineering at Caltech and UTFPR (Federal University of Technology–Paraná), Brazil. He is the author of Finite State Machines in Hardware: Theory and Design (with VHDL and SystemVerilog) (MIT Press).

  • Circuit Design with VHDL, Third Edition

    Volnei A. Pedroni

    A completely updated and expanded comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits.

    This comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits has been completely updated and expanded for the third edition. New features include all VHDL-2008 constructs, an extensive review of digital circuits, RTL analysis, and an unequaled collection of VHDL examples and exercises. The book focuses on the use of VHDL rather than solely on the language, with an emphasis on design examples and laboratory exercises.

    The third edition begins with a detailed review of digital circuits (combinatorial, sequential, state machines, and FPGAs), thus providing a self-contained single reference for the teaching of digital circuit design with VHDL. In its coverage of VHDL-2008, it makes a clear distinction between VHDL for synthesis and VHDL for simulation. The text offers complete VHDL codes in examples as well as simulation results and comments. The significantly expanded examples and exercises include many not previously published, with multiple physical demonstrations meant to inspire and motivate students.

    The book is suitable for undergraduate and graduate students in VHDL and digital circuit design, and can be used as a professional reference for VHDL practitioners. It can also serve as a text for digital VLSI in-house or academic courses.

    • Hardcover $65.00 £50.00
  • Finite State Machines in Hardware

    Finite State Machines in Hardware

    Theory and Design (with VHDL and SystemVerilog)

    Volnei A. Pedroni

    A comprehensive guide to the theory and design of hardware-implemented finite state machines, with design examples developed in both VHDL and SystemVerilog languages.

    Modern, complex digital systems invariably include hardware-implemented finite state machines. The correct design of such parts is crucial for attaining proper system performance. This book offers detailed, comprehensive coverage of the theory and design for any category of hardware-implemented finite state machines. It describes crucial design problems that lead to incorrect or far from optimal implementation and provides examples of finite state machines developed in both VHDL and SystemVerilog (the successor of Verilog) hardware description languages.

    Important features include: extensive review of design practices for sequential digital circuits; a new division of all state machines into three hardware-based categories, encompassing all possible situations, with numerous practical examples provided in all three categories; the presentation of complete designs, with detailed VHDL and SystemVerilog codes, comments, and simulation results, all tested in FPGA devices; and exercise examples, all of which can be synthesized, simulated, and physically implemented in FPGA boards. Additional material is available on the book's Website.

    Designing a state machine in hardware is more complex than designing it in software. Although interest in hardware for finite state machines has grown dramatically in recent years, there is no comprehensive treatment of the subject. This book offers the most detailed coverage of finite state machines available. It will be essential for industrial designers of digital systems and for students of electrical engineering and computer science.

    • Hardcover $50.00 £40.00
  • Circuit Design and Simulation with VHDL, Second Edition

    Circuit Design and Simulation with VHDL, Second Edition

    Volnei A. Pedroni

    A presentation of circuit synthesis and circuit simulation using VHDL (including VHDL 2008), with an emphasis on design examples and laboratory exercises.

    This text offers a comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits. It focuses on the use of VHDL rather than solely on the language, showing why and how certain types of circuits are inferred from the language constructs and how any of the four simulation categories can be implemented. It makes a rigorous distinction between VHDL for synthesis and VHDL for simulation. The VHDL codes in all design examples are complete, and circuit diagrams, physical synthesis in FPGAs, simulation results, and explanatory comments are included with the designs. The text reviews fundamental concepts of digital electronics and design and includes a series of appendixes that offer tutorials on important design tools including ISE, Quartus II, and ModelSim, as well as descriptions of programmable logic devices in which the designs are implemented, the DE2 development board, standard VHDL packages, and other features. All four VHDL editions (1987, 1993, 2002, and 2008) are covered.

    This expanded second edition is the first textbook on VHDL to include a detailed analysis of circuit simulation with VHDL testbenches in all four categories (nonautomated, fully automated, functional, and timing simulations), accompanied by complete practical examples. Chapters 1–9 have been updated, with new design examples and new details on such topics as data types and code statements. Chapter 10 is entirely new and deals exclusively with simulation. Chapters 11–17 are also entirely new, presenting extended and advanced designs with theoretical and practical coverage of serial data communications circuits, video circuits, and other topics. There are many more illustrations, and the exercises have been updated and their number more than doubled.

    • Hardcover $75.00 £58.00
  • Circuit Design with VHDL

    Circuit Design with VHDL

    Volnei A. Pedroni

    An integrated presentation of electronic circuit design and VHDL, with an emphasis on system examples and laboratory exercises.

    This textbook teaches VHDL using system examples combined with programmable logic and supported by laboratory exercises. While other textbooks concentrate only on language features, Circuit Design with VHDL offers a fully integrated presentation of VHDL and design concepts by including a large number of complete design examples, illustrative circuit diagrams, a review of fundamental design concepts, fully explained solutions, and simulation results. The text presents the information concisely yet completely, discussing in detail all indispensable features of the VHDL synthesis. The book is organized in a clear progression, with the first part covering the circuit level, treating foundations of VHDL and fundamental coding, and the second part covering the system level (units that might be located in a library for code sharing, reuse, and partitioning), expanding upon the earlier chapters to discuss system coding.

    Part I, "Circuit Design," examines in detail the background and coding techniques of VHDL, including code structure, data types, operators and attributes, concurrent and sequential statements and code, objects (signals, variables, and constants), design of finite state machines, and examples of additional circuit designs. Part II, "System Design," builds on the material already presented, adding elements intended mainly for library allocation; it examines packages and components, functions and procedures, and additional examples of system design. Appendixes on programmable logic devices (PLDs/FPGAs) and synthesis tools follow Part II. The book's highly original approach of teaching through extensive system examples as well as its unique integration of VHDL and design make it suitable both for use by students in computer science and electrical engineering.

    • Hardcover $46.00