Skip navigation

Evolution

  • Page 2 of 9

This collection reports on the latest research on an increasingly pivotal issue for evolutionary biology: cooperation. The chapters are written from a variety of disciplinary perspectives and utilize research tools that range from empirical survey to conceptual modeling, reflecting the rich diversity of work in the field. They explore a wide taxonomic range, concentrating on bacteria, social insects, and, especially, humans.

Foundations of an Emerging Discipline

The emerging field of action science is characterized by a diversity of theoretical and methodological approaches that share the basic functional belief that evolution has optimized cognitive systems to serve the demands of action. This book brings together the constitutive approaches of action science in a single source, covering the relation of action to such cognitive functions as perception, attention, memory, and volition. Each chapter offers a tutorial-like description of a major line of inquiry, written by a leading scientist in the field.

How do we make decisions? Conventional decision theory tells us only which behavioral choices we ought to make if we follow certain axioms. In real life, however, our choices are governed by cognitive mechanisms shaped over evolutionary time through the process of natural selection. Evolution has created strong biases in how and when we process information, and it is these evolved cognitive building blocks—from signal detection and memory to individual and social learning—that provide the foundation for our choices.

Evolution, Algorithms, and the Brain

Over a century ago, William James proposed that people search through memory much as they rummage through a house looking for lost keys. We scour our environments for territory, food, mates, and information. We search for items in visual scenes, for historical facts, and for the best deals on Internet sites; we search for new friends to add to our social networks, and for solutions to novel problems. What we find is always governed by how we search and by the structure of the environment.

Toward an Art of Evolution

Humans have bred plants and animals with an eye to aesthetics for centuries: flowers are selected for colorful blossoms or luxuriant foliage; racehorses are prized for the elegance of their frames. Hybridized plants were first exhibited as fine art in 1936, when the Museum of Modern Art in New York showed Edward Steichen’s hybrid delphiniums. Since then, bio art has become a genre; artists work with a variety of living things, including plants, animals, bacteria, slime molds, and fungi.

Contemporary Issues in Comparative Cognition

Do animals have cognitive maps? Do they possess knowledge? Do they plan for the future? Do they understand that others have mental lives of their own? This volume provides a state-of-the-art assessment of animal cognition, with experts from psychology, neuroscience, philosophy, ecology, and evolutionary biology addressing these questions in an integrative fashion. It summarizes the latest research, identifies areas where consensus has been reached, and takes on current controversies.

Limited Forms Most Beautiful

Charles Darwin famously concluded On the Origin of Species with a vision of “endless forms most beautiful” continually evolving. More than 150 years later many evolutionary biologists see not endless forms but the same, or very similar, forms evolving repeatedly in many independent species lineages. A porpoise’s fishlike fins, for example, are not inherited from fish ancestors but are independently derived convergent traits.

How Gene Regulation Networks Evolve to Control Development

Each of us is a collection of more than ten trillion cells, busy performing tasks crucial to our continued existence. Gene regulation networks, consisting of a subset of genes called transcription factors, control cellular activity, producing the right gene activities for the many situations that the multiplicity of cells in our bodies face. Genes working together make up a truly ingenious system. In this book, Roger Sansom investigates how gene regulation works and how such a refined but simple system evolved.

Evolution of the Sensory Self

Chimeras and Consciousness begins the inquiry into the evolution of the collective sensitivities of life. Scientist-scholars from a range of fields—including biochemistry, cell biology, history of science, family therapy, genetics, microbial ecology, and primatology—trace the emergence and evolution of consciousness. Complex behaviors and the social imperatives of bacteria and other life forms during 3,000 million years of Earth history gave rise to mammalian cognition.

In 1995, John Maynard Smith and Eörs Szathmáry published their influential book The Major Transitions in Evolution. The "transitions" that Maynard Smith and Szathmáry chose to describe all constituted major changes in the kinds of organisms that existed but, most important, these events also transformed the evolutionary process itself. The evolution of new levels of biological organization, such as chromosomes, cells, multicelled organisms, and complex social groups radically changed the kinds of individuals natural selection could act upon.

  • Page 2 of 9