Skip navigation

Neurobiology and Neurology

  • Page 2 of 6
Discovering the Brain of Synesthesia

A person with synesthesia might feel the flavor of food on her fingertips, sense the letter “J” as shimmering magenta or the number “5” as emerald green, hear and taste her husband's voice as buttery golden brown. Synesthetes rarely talk about their peculiar sensory gift--believing either that everyone else senses the world exactly as they do, or that no one else does. Yet synesthesia occurs in one in twenty people, and is even more common among artists.

New Perspectives

The notion that neurons in the living brain can change in response to experience—a phenomenon known as "plasticity"—has become a major conceptual issue in neuroscience research as well as a practical focus for the fields of neural rehabilitation and neurodegenerative disease. Early work dealt with the plasticity of the developing brain and demonstrated the critical role played by sensory experience in normal development.

Most neurons in the brain are covered by dendritic spines, small protrusions that arise from dendrites, covering them like leaves on a tree. But a hundred and twenty years after spines were first described by Ramón y Cajal, their function is still unclear. Dozens of different functions have been proposed, from Cajal’s idea that they enhance neuronal interconnectivity to hypotheses that spines serve as plasticity machines, neuroprotective devices, or even digital logic elements.

Consciousness as a Biological Phenomenon

The question of consciousness is perhaps the most significant problem still unsolved by science. In Inner Presence, Antti Revonsuo proposes a novel approach to the study of consciousness that integrates findings from philosophy, psychology, and cognitive neuroscience into a coherent theoretical framework.

The thalamus plays a critical role in perceptual processing, but many questions remain about what thalamic activities contribute to sensory and motor functions. In this book, two pioneers in research on the thalamus examine the close two-way relationships between thalamus and cerebral cortex and look at the distinctive functions of the links between the thalamus and the rest of the brain.

It has long been known that aspects of behavior run in families; studies show that characteristics related to cognition, temperament, and all major psychiatric disorders are heritable. This volume offers a primer on understanding the genetic mechanisms of such inherited traits. It proposes a set of tools--a conceptual basis--for critically evaluating recent studies and offers a survey of results from the latest research in the emerging fields of cognitive genetics and imaging genetics.

From Libertarian Illusions to a Concept of Natural Autonomy

Neuroscientists routinely investigate such classical philosophical topics as consciousness, thought, language, meaning, aesthetics, and death. According to Henrik Walter, philosophers should in turn embrace the wealth of research findings and ideas provided by neuroscience. In this book Walter applies the methodology of neurophilosophy to one of philosophy's central challenges, the notion of free will. Neurophilosophical conclusions are based on, and consistent with, scientific knowledge about the brain and its functioning.

Emotion, Addiction, and Human Behavior

Emotion and addiction lie on a continuum between simple visceral drives such as hunger, thirst, and sexual desire at one end and calm, rational decision making at the other. Although emotion and addiction involve visceral motivation, they are also closely linked to cognition and culture. They thus provide the ideal vehicle for Jon Elster's study of the interrelation between three explanatory approaches to behavior: neurobiology, culture, and choice.

Neurobiology, Ideology, and Social Change

Research shows that between birth and early adulthood the brain requires sensory stimulation to develop physically. The nature of the stimulation shapes the connections among neurons that create the neuronal networks necessary for thought and behavior. By changing the cultural environment, each generation shapes the brains of the next.

Recent years have seen a burst of studies on the mouse eye and visual system, fueled in large part by the relatively recent ability to produce mice with precisely defined changes in gene sequence. Mouse models have contributed to a wide range of scientific breakthroughs for a number of ocular and neurological diseases and have allowed researchers to address fundamental issues that were difficult to approach with other experimental models.

  • Page 2 of 6