Skip navigation

Science, Technology, and Society

Science, Technology, and Society

  • Page 3 of 58
The History of an Idea

Models abound in science, technology, and society (STS) studies and in science, technology, and innovation (STI) studies. They are continually being invented, with one author developing many versions of the same model over time. At the same time, models are regularly criticized. Such is the case with the most influential model in STS-STI: the linear model of innovation.

How Britain Discarded Women Technologists and Lost Its Edge in Computing

In 1944, Britain led the world in electronic computing. By 1974, the British computer industry was all but extinct. What happened in the intervening thirty years holds lessons for all postindustrial superpowers. As Britain struggled to use technology to retain its global power, the nation’s inability to manage its technical labor force hobbled its transition into the information age. 

The Detection of Gravitational Waves

Scientists have been trying to confirm the existence of gravitational waves for fifty years. Then, in September 2015, came a “very interesting event” (as the cautious subject line in a physicist’s email read) that proved to be the first detection of gravitational waves.

Transport

Cellular Biophysics is a quantitatively oriented basic physiology text for senior undergraduate and graduate students in bioengineering, biophysics, physiology, and neuroscience programs. It will also serve as a major reference work for biophysicists.

Shaping an Industry and Its Technology

No company of the twentieth century achieved greater success and engendered more admiration, respect, envy, fear, and hatred than IBM. Building IBM tells the story of that company -- how it was formed, how it grew, and how it shaped and dominated the information processing industry.

Investigating Synthetic Biology’s Designs on Nature

Synthetic biology manipulates the stuff of life. For synthetic biologists, living matter is programmable material. In search of carbon-neutral fuels, sustainable manufacturing techniques, and innovative drugs, these researchers aim to redesign existing organisms and even construct completely novel biological entities. Some synthetic biologists see themselves as designers, inventing new products and applications. But if biology is viewed as a malleable, engineerable, designable medium, what is the role of design and how will its values apply?

Science and Technology Studies (STS) is a flourishing interdisciplinary field that examines the transformative power of science and technology to arrange and rearrange contemporary societies. The Handbook of Science and Technology Studies provides a comprehensive and authoritative overview of the field, reviewing current research and major theoretical and methodological approaches in a way that is accessible to both new and established scholars from a range of disciplines.

A Revolutionary History of the Computer

In The Government Machine, Jon Agar traces the mechanization of government work in the United Kingdom from the nineteenth to the early twenty-first century. He argues that this transformation has been tied to the rise of "expert movements," groups whose authority has rested on their expertise. The deployment of machines was an attempt to gain control over state action—a revolutionary move.

Microelectronics and American Science

Since the mid 1960s, American science has undergone significant changes in the way it is organized, funded, and practiced. These changes include the decline of basic research by corporations; a new orientation toward the short-term and the commercial, with pressure on universities and government labs to participate in the market; and the promotion of interdisciplinarity. In this book, Cyrus Mody argues that the changes in American science that began in the 1960s co-evolved with and were shaped by the needs of the “civilianized” US semiconductor industry.

Transforming Science and Sound

At the end of the nineteenth century, acoustics was a science of musical sounds; the musically trained ear was the ultimate reference. Just a few decades into the twentieth century, acoustics had undergone a transformation from a scientific field based on the understanding of classical music to one guided by electrical engineering, with industrial and military applications. In this book, Roland Wittje traces this transition, from the late nineteenth-century work of Hermann Helmholtz to the militarized research of World War I and media technology in the 1930s.

  • Page 3 of 58