Skip navigation

Programming and Programming Languages

  • Page 3 of 5

After completing this self-contained course on server-based Internet applications software, students who start with only the knowledge of how to write and debug a computer program will have learned how to build web-based applications on the scale of Unlike the desktop applications that most students have already learned to build, server-based applications have multiple simultaneous users. This fact, coupled with the unreliability of networks, gives rise to the problems of concurrency and transactions, which students learn to manage by using the relational database system.

The ubiquity of combinatorial optimization problems in our society is illustrated by the novel application areas for optimization technology, which range from supply chain management to sports tournament scheduling. Over the last two decades, constraint programming has emerged as a fundamental methodology to solve a variety of combinatorial problems, and rich constraint programming languages have been developed for expressing and combining constraints and specifying search procedures at a high level of abstraction.

This concise guide to the Java programming language, version 5.0, offers a quick reference for the reader who wants to know the language in greater detail than that provided by the standard text or language reference book. It presents the entire Java programming language and essential parts of the class libraries—the collection classes and the input-output classes.

The goal of The Reasoned Schemer is to help the functional programmer think logically and the logic programmer think functionally. The authors of The Reasoned Schemer believe that logic programming is a natural extension of functional programming, and they demonstrate this by extending the functional language Scheme with logical constructs—thereby combining the benefits of both styles. The extension encapsulates most of the ideas in the logic programming language Prolog.

Building a Modern Computer from First Principles

In the early days of computer science, the interactions of hardware, software, compilers, and operating system were simple enough to allow students to see an overall picture of how computers worked. With the increasing complexity of computer technology and the resulting specialization of knowledge, such clarity is often lost. Unlike other texts that cover only one aspect of the field, The Elements of Computing Systems gives students an integrated and rigorous picture of applied computer science, as its comes to play in the construction of a simple yet powerful computer system.

This innovative text presents computer programming as a unified discipline in a way that is both practical and scientifically sound. The book focuses on techniques of lasting value and explains them precisely in terms of a simple abstract machine. The book presents all major programming paradigms in a uniform framework that shows their deep relationships and how and where to use them together. After an introduction to programming concepts, the book presents both well-known and lesser-known computation models ("programming paradigms").

Uncertainty is a fundamental and unavoidable feature of daily life; in order to deal with uncertaintly intelligently, we need to be able to represent it and reason about it. In this book, Joseph Halpern examines formal ways of representing uncertainty and considers various logics for reasoning about it.

Game Design Fundamentals

As pop culture, games are as important as film or television—but game design has yet to develop a theoretical framework or critical vocabulary. In Rules of Play Katie Salen and Eric Zimmerman present a much-needed primer for this emerging field. They offer a unified model for looking at all kinds of games, from board games and sports to computer and video games. As active participants in game culture, the authors have written Rules of Play as a catalyst for innovation, filled with new concepts, strategies, and methodologies for creating and understanding games.

An Introduction to Distributed Algorithms takes up some of the main concepts and algorithms, ranging from basic to advanced techniques and applications, that underlie the programming of distributed-memory systems such as computer networks, networks of workstations, and multiprocessors. Written from the broad perspective of distributed-memory systems in general it includes topics such as algorithms for maximum flow, program debugging, and simulation that do not appear in more orthodox texts on distributed algorithms.

Types and Semantics

In recent years, object-oriented programming has emerged as the dominant computer programming style, and object-oriented languages such as C++ and Java enjoy wide use in academia and industry. This text explores the formal underpinnings of object-oriented languages to help the reader understand the fundamental concepts of these languages and the design decisions behind them.The text begins by analyzing existing object-oriented languages, paying special attention to their type systems and impediments to expressiveness. It then examines two key features: subtypes and subclasses.

  • Page 3 of 5