Skip navigation

Computer Science and Intelligent Systems

Computer Science and Intelligent Systems

30% Discount Use Code MCOMPSCI30
  •  
  • Page 1 of 88

The Little Prover introduces inductive proofs as a way to determine facts about computer programs. It is written in an approachable, engaging style of question-and-answer, with the characteristic humor of The Little Schemer (fourth edition, MIT Press). Sometimes the best way to learn something is to sit down and do it; the book takes readers through step-by-step examples showing how to write inductive proofs.

Adaptivity and Search in Evolving Neural Systems

Emergence—the formation of global patterns from solely local interactions—is a frequent and fascinating theme in the scientific literature both popular and academic. In this book, Keith Downing undertakes a systematic investigation of the widespread (if often vague) claim that intelligence is an emergent phenomenon. Downing focuses on neural networks, both natural and artificial, and how their adaptability in three time frames—phylogenetic (evolutionary), ontogenetic (developmental), and epigenetic (lifetime learning)—underlie the emergence of cognition.

Experiments in Cooperative Cognitive Architecture

In this book, Whitman Richards offers a novel and provocative proposal for understanding decision making and human behavior. Building on Valentino Braitenberg’s famous “vehicles,” Richards describes a collection of mental organisms that he calls “daemons”—virtual correlates of neural modules. Daemons have favored choices and make decisions that control behaviors of the group to which they belong, with each daemon preferring a different outcome. Richards arranges these preferences in graphs, linking similar choices, which thus reinforce each other.

Algorithms and Applications

Our increasingly integrated world relies on networks both physical and virtual to transfer goods and information. The Internet is a network of networks that connects people around the world in a real-time manner, but it can be disrupted by massive data flows, diverse traffic patterns, inadequate infrastructure, and even natural disasters and political conflict. Similar challenges exist for transportation and energy distribution networks.

A cyber-physical system consists of a collection of computing devices communicating with one another and interacting with the physical world via sensors and actuators in a feedback loop. Increasingly, such systems are everywhere, from smart buildings to medical devices to automobiles. This textbook offers a rigorous and comprehensive introduction to the principles of design, specification, modeling, and analysis of cyber-physical systems.

The dominant feature of modern technology is not how productive it makes us, or how it has revolutionized the workplace, but how enjoyable it is. We take pleasure in our devices, from smartphones to personal computers to televisions. Whole classes of leisure activities rely on technology. How has technology become such an integral part of enjoyment?

Modeling Natural, Social, and Engineered Complex Systems with NetLogo

The advent of widespread fast computing has enabled us to work on more complex problems and to build and analyze more complex models. This book provides an introduction to one of the primary methodologies for research in this new field of knowledge. Agent-based modeling (ABM) offers a new way of doing science: by conducting computer-based experiments. ABM is applicable to complex systems embedded in natural, social, and engineered contexts, across domains that range from engineering to ecology.

An Introduction to Philosophical Issues and Achievements

Thinking Things Through offers a broad, historical, and rigorous introduction to the logical tradition in philosophy and its contemporary significance. It is unique among introductory philosophy texts in that it considers both the historical development and modern fruition of a few central questions. It traces the influence of philosophical ideas and arguments on modern logic, statistics, decision theory, computer science, cognitive science, and public policy.

We turn on the lights in our house from a desk in an office miles away. Our refrigerator alerts us to buy milk on the way home. A package of cookies on the supermarket shelf suggests that we buy it, based on past purchases. The cookies themselves are on the shelf because of a “smart” supply chain. When we get home, the thermostat has already adjusted the temperature so that it’s toasty or bracing, whichever we prefer. This is the Internet of Things—a networked world of connected devices, objects, and people.

Stanford and the Computer Music Revolution

In the 1960s, a team of Stanford musicians, engineers, computer scientists, and psychologists used computing in an entirely novel way: to produce and manipulate sound and create the sonic basis of new musical compositions. This group of interdisciplinary researchers at the nascent Center for Computer Research in Music and Acoustics (CCRMA, pronounced “karma”) helped to develop computer music as an academic field, invent the technologies that underlie it, and usher in the age of digital music.

  •  
  • Page 1 of 88