Subject Index

Actions, 122–123
 basic, 19, 22
 component, 123
 of productions, 102
Adaptation, 8, 46, 48, 100. See also
 Problem solving; Rationality,
 limits of
 limits of, 12
 predictive, 8
Adaptive expectations, 39
Adaptive organisms, 210
Adaptive production system, 103
Adaptive systems, 8, 16–17, 82, 169,
 172–173
Adaptivity, 22, 110
Administration. See Organizations
Aesthetics. See Music
Afferent channels, 121
Aggregations. See Chunk
Algebra, learning, 103
Algorithms, 27, 48, 134, 135. See also
 Search strategy
Allocation of resources, 25, 124–127
 for search, 134
Alternatives, 114, 116. See also
 Search strategy
 admissible, 120–121
 evaluation of, 129
 finding, 121–124
 generation of, 129
Altruism, 45, 157
AM program, 106–108
Analysis, and design, 111
Anarchism, 155. See also Libertari-
 anism
Ant, parable of the, 63
Architectural design, 129, 132
Architecture, 92, 111, 151
Architecture of mind, simplicity of,
 86–87
Artifacts, 3, 10, 22
 as “interface”, 6–7
 computers as, 17–18
 symbol systems as, 21–23
Artificial, the, 3–4, 110, 111
 creating the, 111–138
 defined, 4
 psychology as science of, 54, 75
 sciences of, 111–112
 versus synthetic, 4
Artificial Intelligence (AI), 4, 49
 vs. OR, 27–28
Artificial systems, 16–17, 26, 87
 and planning, 33
Artificiality, xi–xii, 2, 13
 of behavior, 54, 81
Aspiration levels, 28–30, 160
Association, retrieval by, 88
Associations, 69, 122
Associative memory, 88
Attention, 109, 143, 144, 165
 bottlenecks in, 143
 management of, 161–162
Authority, formal, 185
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automata, 58, 64</td>
</tr>
<tr>
<td>Automatic design, 136</td>
</tr>
<tr>
<td>Automatic translation, 77</td>
</tr>
<tr>
<td>Automobile emission standards, 145–146</td>
</tr>
<tr>
<td>Backgammon, 89–90</td>
</tr>
<tr>
<td>BACON program, 107–108</td>
</tr>
<tr>
<td>Bayesian decision theory, 144</td>
</tr>
<tr>
<td>in planning, 126</td>
</tr>
<tr>
<td>Behaving systems. See Systems</td>
</tr>
<tr>
<td>Behavioral sciences, 183</td>
</tr>
<tr>
<td>Biological evolution, 204–206</td>
</tr>
<tr>
<td>Biological sciences, 183</td>
</tr>
<tr>
<td>Biological systems, 186–187, 191</td>
</tr>
<tr>
<td>Biology, evolutionary, 46</td>
</tr>
<tr>
<td>Bond strength, chemical, 201</td>
</tr>
<tr>
<td>hierarchy of, 201</td>
</tr>
<tr>
<td>Boundaries, organization-market, 40–41</td>
</tr>
<tr>
<td>Bounded rationality. See Rationality, bounded</td>
</tr>
<tr>
<td>Brain, 23, 82–83</td>
</tr>
<tr>
<td>as symbol system, 22</td>
</tr>
<tr>
<td>Bubbles, 36</td>
</tr>
<tr>
<td>Business cycle, 36</td>
</tr>
<tr>
<td>Business education, 111</td>
</tr>
<tr>
<td>Business firm, 25–26, 28, 31, 48, 87, 185</td>
</tr>
<tr>
<td>Business organizations, 40–43</td>
</tr>
<tr>
<td>like computers, 41</td>
</tr>
<tr>
<td>Catastrophe, 174</td>
</tr>
<tr>
<td>Catastrophe theory, 175–176</td>
</tr>
<tr>
<td>Cellular automata, 169, 174, 180, 181</td>
</tr>
<tr>
<td>Chaos, 169, 174, 181</td>
</tr>
<tr>
<td>and complexity, ix, 176–178</td>
</tr>
<tr>
<td>and rationality, 178</td>
</tr>
<tr>
<td>Chaotic systems, 176–178</td>
</tr>
<tr>
<td>and dynamic systems, 176–177</td>
</tr>
<tr>
<td>and physical systems, 176</td>
</tr>
<tr>
<td>weather as example, 176, 179</td>
</tr>
<tr>
<td>Chess, 86, 89–91, 118–119, 195</td>
</tr>
<tr>
<td>rapid transit, 90</td>
</tr>
<tr>
<td>Chess-playing programs, 127</td>
</tr>
<tr>
<td>Chunk, 63–68, 72, 81, 86, 87, 89, 91</td>
</tr>
<tr>
<td>City planning, 130, 151</td>
</tr>
<tr>
<td>Classes, of complex systems, 173</td>
</tr>
<tr>
<td>Classical economics, 49</td>
</tr>
<tr>
<td>Client, 166</td>
</tr>
<tr>
<td>identifying the, 150–154</td>
</tr>
<tr>
<td>society as the, 153–154</td>
</tr>
<tr>
<td>Club of Rome report, 147–148</td>
</tr>
<tr>
<td>Cognition, 75</td>
</tr>
<tr>
<td>human, 110</td>
</tr>
<tr>
<td>Cognitive processes, simulation of. See Simulation</td>
</tr>
<tr>
<td>Cognitive system, human, 100</td>
</tr>
<tr>
<td>Combinatorial problems, 28</td>
</tr>
<tr>
<td>Command variables, 116–117</td>
</tr>
<tr>
<td>Communication systems, design of, 143</td>
</tr>
<tr>
<td>Competition, 38</td>
</tr>
<tr>
<td>imperfect, 37</td>
</tr>
<tr>
<td>perfect, 32, 36</td>
</tr>
<tr>
<td>Compiler, 93</td>
</tr>
<tr>
<td>Complex designs, 163</td>
</tr>
<tr>
<td>Complex information processing, 4</td>
</tr>
<tr>
<td>Complex problems, 213</td>
</tr>
<tr>
<td>Complex systems, 7, 128, 130, 155, 173, 181, 183–184, 191, 196, 216</td>
</tr>
<tr>
<td>evolution of, 188–197</td>
</tr>
<tr>
<td>and holism, 170</td>
</tr>
<tr>
<td>simple descriptions of, 208–210</td>
</tr>
<tr>
<td>Complexity, 21, 49, 64, 68, 80–81, 99, 109–110, 165, 184, 188–197</td>
</tr>
<tr>
<td>alternative views of, 169–181</td>
</tr>
<tr>
<td>architecture of, 183–216</td>
</tr>
<tr>
<td>and adaptive systems, ix</td>
</tr>
<tr>
<td>and artificiality, xii</td>
</tr>
<tr>
<td>and chaos, ix, 176–178</td>
</tr>
<tr>
<td>computational, 35</td>
</tr>
<tr>
<td>conceptions of, 169–174</td>
</tr>
<tr>
<td>description of, 206–216</td>
</tr>
<tr>
<td>and evolution, 179–181</td>
</tr>
<tr>
<td>and genetic algorithms, ix, 180</td>
</tr>
<tr>
<td>in self-reproducing systems, 211–212</td>
</tr>
<tr>
<td>of plans, 139</td>
</tr>
</tbody>
</table>
Comprehensibility, and decomposability, 204, 207–210
Computational limits, 34–35, 120, 157
Computational procedures, 27, 135
Computational techniques, efficient, 119
Computer-aided design, 133
Computer programs, 20, 93, 95, 129, 135, 212–213
automatic generation of, 97
for natural language, 78
Computer reliability, 18
Computer science, 112
as empirical science, 18
Computer simulation, 21, 66, 82, 177, 180
of evolutionary processes, 180–181
Computers, 14, 21, 23, 27, 55, 137
and thought, 21
as abstract objects, 18–19
as artifacts, 17–18
as empirical objects, 19–21
business organizations as, 6
stored-program, 172, 173
Concept, extensional definition of, 59
Concept, intensional definition of, 60
Concept attainment, 74, 81, 86
limits on speed of, 59–63
Conditions, of productions, 102
Conflict of interest, 38, 153
Constitution, American, 140–141
Constraints, 116
Cooperation, 38
Coordination, methods of, 31
through markets, 31
Cost-benefit analysis, 125, 146
Cost curve, 25–26
Criteria, for ill-structured problems, 106
Crossover, 180
Cryptarithmetic problems, 54–58, 62, 81, 85
Curriculum, for design, 134–135
for social design, 166–167
Cybernetics, 169
and general systems theory, 172–174
Data, for planning, 146–147
information stored as, 110
reliability, 147
Data-driven production, 103
Decentralization, 41
Decision making, 12
Declarative logic, reduction to, 115–118
Decomposability, 197–204
Decomposition, 128
of complex systems, 128, 184
Description, 184
Descriptive, and normative, 5, 26
Design, 4, 92
activities, cycle of, 92
and functional description, 9
as resource allocation, 124–127
as valued activity, 164
criteria for, 8
hierarchy in, 128–131
horizons for, 156–162
large-scale, 139
logic of, 114–124
objective, 12
of buildings, 129, 120
of evolving artifacts, 139–167
organization of, 134
problems, large-scale, 161
representation of, 134, 141–146
process of, 137
representation of, 131–134, 141–146
science of, 111–138
with alternatives not given, 124
Designation, 22
Diet problem, 116–117
Differences, in problem solving, 122–123
Differential equations, 177, 210, 215
Discovery processes, 105–108
Disequilibrium, 175
DNA, 212
Docility, 45
Doing, learning by, 105

Economic actors, 25–30, 40, 49
Economic behavior, 87
Economic Cooperation Administra-
tion (ECA), 141–143
Economic dynamics, 198
Economic evolution, mechanisms of,
48. See also Evolution
Economic man, 12, 46
Economic rationality, 23–24, 25–50
Economic system, models of, 13
Economics, xii, 30, 154
as abstract rationality, 23
Economy, the, 25, 30
Ecosystem, 33
Educational process, 215
Efferent channels, 122
Egoism, 157
Emergence, 171
weak, 171, 172
Emotion, 53
Empire building, 196
Empty world hypothesis, 209
Ends. See Mean-ends analysis,
Energy-environment problem, 158
Engineering, 4, 111
design, 15, 116, 132
drawings, 133
education, xii, 111–114, 134–135
profession, 152
Enjoyment, capacity for, 164
Entrepreneur, 25
Entropy, 172, 192
and information, 189
Environment, as mold, 5–13,
benign, 12
complexity of, 21
external, 23, 93, 100
fragility of, 160
inner, 6, 11, 15, 17, 23, 25, 26, 54,
59–63, 67, 68, 80, 83, 87, 110,
113, 116, 128, 136
memory as part of, 53
outer, 6, 11, 25, 54, 83, 87, 110,
113, 116, 135, 149
shape of, 62
taxing, 12
EPAM (Elementary Perceiver and
Memorizer), 71, 100–101
Equilibration, dynamics of, 198
Equilibrium, 32, 36, 48, 175, 178,
198. See also Strange attractor
Evaluation, theory of, 118–121, 134
Evolution, 6, 157, 180, 211
and complexity, 179–181
and social planning, 164–166
biological, 189–192, 204–206
creative, 169
economic vs. biological, 48
generators, 46
improbability of, 192
myopia of, 47, 164
of complex systems, 188–197
of organizations, 44–48
of multi-cellular organisms,
192–193
speed of, 189
test, 46
Evolutionary processes, 45–49
Examples, learning from, 103–105
Expectations, 35–40, 43
mutual, 36
rational (See Rational expectations)
Expected value, 116
Expertise, 105–111
Expert systems, 28
Explanation, 7, 16–17
levels of, 83
External world, information in,
98–99
Externalities, 42, 150, 152
Eye movements, 73
Factorization of differences, 124
Families, 185
Feedback, 35, 149, 166, 169, 173,
179
negative, 8
of information, 195
Feedback control, 172
Feedback Control Systems, 172. See also Servomechanism Theory
Feedback loops, 33
Feedforward, 149
based on prediction, 36
Fitness, 44, 45, 47, 48, 165, 180
and growth, 48
and profitability, 48
Fixation, in memory, 62, 66–67
Fixation time, 68
Flexibility, 43
designing for, 166
in planning, 158
Forecasting, 166
Foresight, limits of, 140–141
Formal organization, See Organizations, formal, Franchise, 40
Freedom, as value in planning, 140–141
Functional analysis, 17, 128
Functional description, 9–12, 19
Functional equivalence, 9
Functional explanation, 7–8
Future, attitudes toward, 157–162
discount rate, 157–158
significance for planning, 147–148
Games, theory of, 37–38, 166
and social planning, 153–154
General Problem Solver (GPS), 94, 122, 172
General systems, 169
General systems theory, 173, 174
and cybernetics, 172–174
Generator-test cycle, 128–130
Genetic algorithms, 169, 174, 180, 181
Genetic description, 213–214
Genetic mechanisms, 215
Genetic program, 214
Gestalts, 169
Goal-driven production, 103
Goal-seeking systems, 22
Goal attainment, 11
Goals, 5, 12, 44
as motivators, 162
design without, 162–166
final, 162–166
in production conditions, 103
of plans, 139
problem solving without, 106
Government, as organization, 155
Grammar. See Syntax, Gravitational
systems, 179
Growth, as fitness test, 48
Happiness, human, 29, 160
selectivity in, 194, 195–196
Hierarchic description, 214
Hierarchic span, 202–204
Hierarchic systems, 134, 184–188, 197–198, 209
Hierarchy, 184–188, 204, 216
assumption of, 174
flat, 186
formal, 185
in biological systems, 186–187
in design, 128–131
evolutionary explanation of, 196–197
in physical systems, 186–187
in symbolic systems, 187–188
of list structures, 77, 80
social, 186
Highway design, 125–126
Holism, 169, 170–172, 184
and complex systems, 170
and living systems, 170–172
and reductionism, 170–172, 173
Homeostasis, 8, 149, 169, 173
Horizons, for design, 156–163, 166
time and space, for design, 156–162
House floor plans, 133
Human nature, malleability of, 152
Human problem solving. See Problem solving, Hyperinflation, 36
Hypothesis testing, 63
Identification, 43–45
consequences of, 43–44
evolutionary basis for, 44–45
Ill-defined tasks, 98
Imageless thought, 70
Images, mental, 98
visual, 70
Imperatives, logic of. See Logic, imperative, Improbability, of evolution, 192
Index, of LTM, 88, 99, 101, 110
Indirect effects, detection of, 159
Information, 169
filtering systems, 144
gathering, search as, 127
in LTM, quantity of, 91
quantity of, 212
and skill acquisition, 100–101
Information-processing system, 22, 102
human, 62–64, 203
theories, 66, 70–71, 74, 77
Information superhighway, 144
Information theory, 172, 173, 189
Initial conditions, establishing, 163
Input-output matrix, 199
Instability, 37, 38, 149
Integer programming, 27
Intelligence, as computation, 23
Interaction, intensity of, 187
social, 186
Interdependence, international, 159
Interest, rate of, 157–158
social rate of, 157–159
Interface, 6, 9, 83, 113
Interpretation, of programs, 93
Interpretive process, 214
Interruption and memory, 67
Intuition, 89–90
Invariants, 100, 177. See also Universal numbers
of human thinking, 110
Inversion, 180
Invisible Hand, The, 32
Irreversible commitments, 163
ISAAC program, 96–98
Judgment, 28, 135
Kepler’s third law, 107
Knowledge, and skill, 93
from simulation, 15
transmission of, 215
limited, 45, 177
Language, acquisition of, 80
through pictures, 78–79
universals, 76
Language processing, semantics in, 77–80
Learning, 100–105
from examples, 103–105
incremental, 64
multiplicity of forms of, 100
one-trial, 64
rote and meaningful, 101
with understanding, 101
Learning programs, 86, 102–105
Levels, of explanation. See also Hierarchy, Explanation
Libertarianism, 155. See also Anarchism
Library of Congress, 99
Life of the Mind, 135–138
Limiting resources, 143–144
Linear differential equations, 176
Linear programming, 27, 117, 134
Linguistic theory, 77–80
LISP, 104, 106
List structure, 71, 74, 77, 79, 82, 86, 96, 99
linked, 88
Living systems, and holism, 170–172
Logic, 114–118
declarative, 115–118, 121, 122–123, 134,
deontic, 115
imperative, 115, 134
modal, 115, 117
Logical inference problems, 86
Magic square, 131–132
Magnetic Resonance Imaging. See also MRI, 82
Management information systems, 144
Management science, 27, 111, 116
Marginal cost, 145
Marginal returns, 145
Market economy, vs. organization & market economy, 32, 35, 40–41, 46
Markets, 30–45
and optimality, 32–33
and social coordination, 30–31, 49 clearing, 32
function of, 31
MATER program, 127
Mathematical representations, 133
Maxima, local vs. global, 46–47
Maximization, 116
Maze problem, 54, 58, 123, 193, 195
Meaning. See Semantics, Meaningfulness, 65
Means-ends analysis, 94, 121–122, 124, 134, 210
Medical, care, cost, and quality, 152
diagnosis, 86, 88, 93
education, 111, 112
profession, 152
Memorizing, 81
Memory
associative, 69, 81–82
capacity of, 58
compared with encyclopedia, 88
external, 61, 91–92
for processes, 93–94
human, 65, 99
information in, 90–93
long-term (LTM), 62, 81, 85, 87–88, 98
organization of, 68–75
parameters of, 63–67
short-term (STM), 61, 62, 67, 81, 82, 89, 102–103
capacity of, 68
visual, 70–74
Mental arithmetic, 68
Merit, figures of, 119
Mind, human, 76, 81–83
and neurophysiology, 82–83
Missionaries and Cannibals problem, 85
Models, three-dimensional, 134
Motivation, 53n.
Motor channels, 121
Motor controller, design of, 10
Motor sequences, 122–123
MRI. See also Magnetic Resonance Imaging, 82
Multi-cellular organisms, evolution of, 192–193
Music, 136
composition of, 91, 129
computer composition of, 136–137
enjoyment of, 164
hierarchy in, 188
Mutation, 180
Mutilated checkerboard problem, 109
Myopia of evolution, 47, 157
NASA, 139–140
Nativist theory of language acquisition, 76
Natural language processing, 75–80, 95, 98, 134
semantics in, 77–79
Natural laws, 2, 12, 15, 18, 108, 113, 118
Natural science, 1, 6, 16, 111, 136
Natural selection, 7, 46, 180
problem solving as, 193–195
Natural systems, 175
Near decomposability, 209, 214, 216
assumption of, 174
and comprehensibility, 204, 207–208
Nearly decomposable systems, 197–204
Neo-Darwinian evolutionary theory, 44
Nerve cells, 187
Neurophysiology, 82–83
and psychology, 21
New institutional economics (NIE), 40
Niches, environmental, 165
Nonlinear equations, 177
Normative theories, 25–26
Normative, and descriptive, 4
Novelty, 105, 162
Number scrabble, 131–132

Ohm’s law, 171
Ontogeny recapitulates phylogeny, 212–215
Operations research (OR), 27–28, 46
vs. artificial intelligence, 27–28
Optimality, 28–29, 32–33, 41–42, 134
Optimizing, 37–38, 46–48, 115–119, 121, 130, 146
Order, without planner, 33–35
Organization-market boundary, 40–41
Organizations, xii, 30–35
administrative, 13
business, 8
and decentralization, 40, 41–42
design of, 113
formal, 161–162
goals of, 154–155
hierarchic, 31
and identification, 43–45
and loyalty. See also Identification
members, as designers, 153
properties of, 17
as representations, 141–143
rules of, 154
as social schemes, 49
in social design, 154–156, 166
theory of, 27, 129, 153

Painting, 92, 163
Paper and pencil, 61–62
Paradoxes of imperative logic, 115

Parameters, 63, 110
estimation, 63, 67
fixation, 68–69
fixed, 116
Pareto optimality, 33, 34, 35
Parsimony, 92
Particles, elementary, 185, 186
Partitioning, of systems, 185
Pattern discovery, 86
Perception, 74
Perceptual productions, 103
Perceptual tests, 103
Performance, limits of, 59
Periodic cycles, 175
Phrase structure, 76
hierarchic, 95
Phylogeny, 212–215
Physical laws, 98
Physical symbol systems, 21
Physical systems, 186
Physicochemical systems, 201–202
Physics,
rediscovering, 107–108
understanding, 96–98
Physics problems, 86, 99
Physiological psychology. See Brain;
Neurophysiology, Pitts-McCulloch neurons, 18
Planners, 33–34, 139
Planning, 125–126
data for, 146–147, 166
horizons, 148
social, 139–167
Planning groups, 162
Political constitutions as designs, 140
Possible worlds, 117, 118, 121
Prediction, 13, 15, 35, 149, 177
of global warming, 148
social, 147–149
vs. understanding, 178
Prices, 36
Prisoners’ Dilemma game, 37–38
Probability, 116, 144
and speed of evolution, 189
Probability distributions, 126
Problem representation, 108–109, 132
Problem solving, 54, 210–211
as change in representation, 132
as natural selection, 193–195
Problem-solving programs, 126–127
Problem, short-run and long-run, 161
Procedural rationality, 26–27, 49
tools of
OR and AI, 27–28, 49
Procedures, information stored as, 110
Process as determinant of style, 130–131
Process description, 210–211, 215
Processes, 22
elementary, 58
memory for, 93–94
Prodigies, 91
Production systems, 102–103
adaptive, 103
Productions, 102
Professional-client relations, 150–153, 166
Professional education, xii, 111
and design, 111
Professional role, 150
Professional schools, 111
Profit, 33
vs. risk, 26
Profitability, as fitness test, 48
Profit maximization, 8, 25. See also Satisficing
Programs. See Computer programs
Progress, 160–161, 166
and evolution, 165
in human knowledge, 160–161
moral, 160
Protein, 212
Psychology, xii, 21, 63ff.
as science of artificial, 54–59
Purpose, 7
and natural law, 3
Qualitative analysis, 177
Queuing theory, 27
Rational expectations, 23–24, 38–39, 154
Rationality, 8, 12–13, 23, 35
and chaos, 178–179
and goals, 162
bounded, 38, 39, 43, 44, 45, 140, 150, 166
definition of, 37, 38, 39
economic, 25–50
limits of, 12, 23–24, 55, 87
procedural, 23, 25, 26–27
substantive, 25, 26
Recall, 67
Recapitulation, 215
Recoding, 209
Recognition, 90, 93
processes, 89
retrieval by, 88
task, 68
Reductionism, and holism, 169–173
Redundancy, 101, 210, 215
Reference works. See external memory, Reinforcement, 60
Representation, 94–98, 146
adaptation of, 108
change in, 132
discovery of, 108–109
for new problems, 108–109
internal, 22, 79
nonnumerical, 144–146
of designs, 131–134, 166
of learned material, 101
of problem states, 96, 97
problem solving as, 94–95, 132
spatial, 132–133
taxonomy of, 133–134
Reproduction, 180, 196
Resources, allocation of, 124–127
Revenue curve, 26
Rewards, 45
RNA, 212
Rote learning, 74
Satisficing, 27, 28–30, 38, 39, 46, 48, 119–121, 134, 147
Scan and search strategy. See Search, strategies for
Scarcity, 25, 26
Scenarios, 148
Schemas, 98, 102
Science, 112
and analysis, 4
applied, 111, 112
artificial, 3
empirical, 19
natural (See Natural science)
parsimony in, 92
Search, 88, 124
best-first, 106
evaluation of, 126–127, 130
exhaustive, 55
for alternatives, 121
heuristic, sources of, 194, 195–196
logic of, 122–125
selective, 55–56
strategies for, 55–59
theory of, 83, 126–127
trial-and-error, 57
Search-guiding mechanisms, 110, 126–127
Search tree, 127
Selective information, 173
Selectivity, in search. See Heuristic search
Self-reproducing program, 213
Self-reproducing systems, 181, 196, 211–212
Semantic knowledge, 98
Semantically rich domains, 86–94, 97
Semantics, 77
of physics problems, 98
Sensitivity analysis, 148
Sensors, 22
Sequence extrapolation, 106
Serial systems, 81–82
Servomechanism theory, 172. See also Feedback Control Systems
Similarity, in verbal learning, 65
Simplicity, 68, 80–81, 100, 109–110, 138
and size, 98–100
of behavior, 51–53, 64
of human thinking, 85
Simulation, 13
as source of knowledge, 14–15
of cognitive processes, 4
of poorly understood systems, 15–17
techniques of, 13–14
SKETCHPAD program, 133
Social design
curriculum for, 166
organizations in, 154–156, 166
process of, 166–167
representation in, 141–143
Social planning, 139–167
and evolution, 164–166
Social systems, 186
dynamics of, 200
hierarchy in, 186
near decomposability of, 200–201
Space of alternatives, 123
Span, 187, 189, 190, 197
hierarchic, 201–204
of control, 187
Spatial propinquity, 187
Spatial representation, 132–133
Specialization, 92, 192, 193
Stability, 175
of complex forms, 189
State descriptions, 210–211, 214, 215
States of the world, 148
Static equilibria, 175
Statistical decision theory, 116, 118
Stimuli, visual, 70
Stimulus, 60
Stimulus-driven production, 103
Stimulus-response pair, 103
Stimulus chunking, 69
Strange attractor, 178. See also Equilibrium
Strategies, 62, 110, 131–132
learning of, 62–63
Strategy, efficient discovery, 60–61
Structure, internal, 16
 theory of, 134
Style, 130
Subassemblies, 189, 190
Subsystems, 184, 197, 201–202, 209
Symbol structures, 22
Symbol systems, 21
 basic capabilities of, 22
Symbolic systems, 187–188
Symbols, 2, 22
Syntactic ambiguities, 78–79
Syntax, 77, 79–80
Synthesis, 9
Synthetic, the, 4
System evolution, 179–180
System, inner. See Environment, inner
Systems, hierarchic, 183–216
Systems, study of, 216

Table of connections, 122
Target states, alternative, 148
Task domains, professional, 86
Task environment, 12, 83
Taxation, 45
Tea Ceremony problem, 94, 99
Technology, 139, 150
 medical, 152
Teleology, 172
The Game of Life, 180–181
Theorem proving by computer, 20
Theory, normative, 26
 positive, 26
Thinking. See Psychology, Thought processes, 138
Time-sharing systems, 19
Time perspectives, changes in, 158–160
Time, for fixation. See Fixation time
Tower of Hanoi puzzle, 85, 105
Transformational linguistics, 75
Traveling salesman problem, 120
Tree, for search. See also Problem solving; Search strategy, Trial-
 and-error search, 193
 selective, 194
Turbulence, 177, 179
Two cultures, 136–138

Uncertainty, 27, 35, 42–43, 153
 and expectations, 35–39
 and standardization and coordination, 42
UNDERSTAND program, 95–96, 97, 101
Understanding, and learning, 101
 and representation, 94–98
 by simulating, 13–17
 processes of, 95–96
 vs. prediction, 178
Understanding stories, 98
Understanding systems, 100–101
Universal numbers, 177. See also
 Invariants
University, 112
Urban transit planning, 154
Utility, 116, 118, 144
Utility function, 26, 28, 116, 130
Utopian thought, 152

Valence, chemical, 201, 202
Values. See Evaluation; Search
Variety, trend in, 165
Vectors, 180
Visual memory. See Memory, visual
Visual stimuli, 81

Watchmaker parable, 188–189, 191, 192, 193, 195, 213
Whorfian hypothesis, 80
Working, backward, 103
 forward, 103