Contents

Preface xv

I INTRODUCTION 1

1 An Overview of Fundamental Proof Methods 3
 1.1 Equality chaining 3
 1.2 Induction 8
 1.3 Case analysis 10
 1.4 Proof by contradiction 12
 1.5 Abstraction/specialization 13
 1.6 The usual case: Proof methods in combination 15
 1.7 Automated proof 15
 1.8 Structure of the book 16

2 Introduction to Athena 19
 2.1 Interacting with Athena 22
 2.2 Domains and function symbols 23
 2.3 Terms 27
 2.4 Sentences 34
 2.5 Definitions 40
 2.6 Assumption bases 42
 2.7 Datatypes 44
 2.8 Polymorphism
 2.8.1 Polymorphic domains and sort identity 50
 2.8.2 Polymorphic function symbols 52
 2.8.3 Polymorphic datatypes 57
 2.8.4 Integers and reals 59
 2.9 Meta-identifiers 61
 2.10 Expressions and deductions
 2.10.1 Compositions 62
 2.10.2 Nested method calls 68
 2.10.3 Let expressions and deductions 69
 2.10.4 Conclusion-annotated deductions 70
 2.10.5 Conditional expressions and deductions 71
 2.10.6 Pattern-matching expressions and deductions 72
 2.10.7 Backtracking expressions and deductions 73
 2.10.8 Defining procedures and methods 74
CONTENTS

2.11 More on pattern matching 78
2.12 Directives 85
2.13 Overloading 86
2.14 Programming 89
 2.14.1 Characters 90
 2.14.2 Strings 90
 2.14.3 Cells and vectors 90
 2.14.4 Tables and maps 91
 2.14.5 While loops 93
 2.14.6 Expression sequences 93
 2.14.7 Recursion 93
 2.14.8 Substitutions 94
2.15 A consequence of static scoping 98
2.16 Miscellanea 99
2.17 Summary and notational conventions 103
2.18 Exercises 105

II FUNDAMENTAL PROOF METHODS 111

3 Proving Equalities 113
 3.1 Numeric equations 113
 3.2 Equality chaining preview 116
 3.3 Terms and sentences as trees 117
 3.4 The logic behind equality chaining 120
 3.5 More examples of equality chaining 128
 3.6 A more substantial proof example 130
 3.7 A better proof 134
 3.8 The principle of mathematical induction 135
 3.8.1 Different ways of understanding mathematical induction 139
 3.9 List equations 140
 3.9.1 Polymorphic datatypes 147
 3.10 Evaluation of ground terms 150
 3.11 Top-down proof development 152
 3.12 * Input expansion and output transformation 158
 3.12.1 Converters 158
 3.12.2 Input expansion 162
 3.12.3 Output transformation 165
 3.12.4 Combining input expansion and output transformation with overloading 166
 3.12.5 Using declare with auxiliary information 167
CONTENTS

3.13 ★ Conjecture falsification 168
3.14 ★ Conditional rewriting and additional chaining features 172
3.15 ★ Proper function definitions 179
3.16 Summary 185
3.17 Additional exercises 186
3.18 Chapter notes 189

4 Sentential Logic 191
4.1 Working with the Boolean constants 191
4.2 Working with conjunctions 192
 4.2.1 Using conjunctions: left-and and right-and 192
 4.2.2 Deriving conjunctions: both 193
4.3 Working with conditionals 194
 4.3.1 Using conditionals: modus ponens and modus tollens 194
 4.3.2 Deriving conditionals: The assume construct 195
4.4 Working with disjunctions 199
 4.4.1 Using disjunctions: Reasoning by cases 199
 4.4.2 Deriving disjunctions 201
4.5 Working with negations 202
 4.5.1 Using negations 202
 4.5.2 Deriving negations: Proof by contradiction 202
4.6 Working with biconditionals 206
 4.6.1 Using biconditionals 206
 4.6.2 Deriving biconditionals 207
4.7 Forcing a proof 207
4.8 Putting it all together 209
4.9 A library of useful methods for sentential reasoning 211
4.10 Recursive proof methods 226
4.11 Dealing with large conjunctions and disjunctions 236
4.12 Sentential logic semantics 238
4.13 SAT solving 246
4.14 Proof heuristics for sentential logic 272
 4.14.1 Backward tactics 274
 4.14.2 Forward tactics 276
 4.14.3 Replacement tactics 282
 4.14.4 Strategies for deploying the tactics 282
4.15 A theorem prover for sentential logic (optional) 294
4.16 Additional exercises 304
4.17 Chapter notes 315
CONTENTS

5 First-Order Logic 319
 5.1 Working with universal quantifications 323
 5.1.1 Using universal quantifications 323
 5.1.2 Deriving universal quantifications 326
 5.2 Working with existential quantifications 331
 5.2.1 Deriving existential quantifications 331
 5.2.2 Using existential quantifications 332
 5.3 Some examples 338
 5.4 Methods for quantifier reasoning 342
 5.5 Proof heuristics for first-order logic 353
 5.5.1 Backward tactics for quantifiers 354
 5.5.2 Forward tactics for quantifiers 355
 5.5.3 Proof strategy for first-order logic 371
 5.6 First-order logic semantics 372
 5.7 Additional exercises 386
 5.8 Chapter notes 393

6 Implication Chaining 397
 6.1 Implication chains 397
 6.2 Using sentences as justifiers 404
 6.2.1 Nested rules 409
 6.3 Implication chaining through sentential structure 411
 6.4 Using chains with chain-last 413
 6.5 Backward chains and chain-first 415
 6.6 Equivalence chains 417
 6.7 Mixing equational, implication, and equivalence steps 419
 6.8 Chain nesting 423
 6.9 Exercises 425

III PROOFS ABOUT FUNDAMENTAL DATATYPES 429

7 Organizing Theory Development with Athena Modules 431
 7.1 Introducing a module 431
 7.2 Natural numbers using modules 433
 7.3 Extending a module 435
 7.4 Modules for function symbols 436
 7.5 Additional module features 437
 7.6 Additional module procedures 438
 7.7 A note on indentation 439
CONTENTS

8 Natural Number Orderings

8.1 Properties of natural number ordering functions 441
 8.1.1 Trichotomy properties 445
 8.1.2 Transitive and asymmetric properties 446
 8.1.3 Less-equal properties 448
 8.1.4 Combining ordering and arithmetic 451

8.2 Natural number subtraction 453

8.3 Ordered lists 461

8.4 Binary search trees 464

8.5 Summary and a connecting theorem 470

8.6 Additional exercises 473

8.7 Chapter notes 474

9 Integer Representations and Proof Mappings

9.1 Declarations and axioms 475

9.2 First proofs of integer properties 477

9.3 Another integer representation 478

9.4 Mappings between the signed and pair representations 480

9.5 Additive homomorphism property 481

9.6 Associativity and commutativity of integer addition 483

9.7 Power series 484

9.8 Summary and looking ahead 487

9.9 Additional exercises 488

10 Fundamental Discrete Structures

10.1 Ordered pairs 491
 10.1.1 Representation and notation 493
 10.1.2 Results and methods 494

10.2 Options 497
 10.2.1 Representation and notation 497
 10.2.2 Some useful results 498

10.3 Sets, relations, and functions 499
 10.3.1 Representation and notation 499
 10.3.2 Set membership, the subset relation, and set identity 501
 10.3.3 Set operations 508
 10.3.4 Cartesian products 518
 10.3.5 Relations 521
 10.3.6 Set cardinality 529
 10.3.7 Powersets 530
CONTENTS

10.4 Maps 533
 10.4.1 Representation and notation 533
 10.4.2 Map operations and theorems 535
 10.4.3 Default maps 549
10.5 Chapter notes 558

IV PROOFS ABOUT ALGORITHMS 561

11 A Binary Search Algorithm 563
 11.1 Defining the algorithm 563
 11.1.1 Efficiency considerations 565
 11.1.2 Correspondence to definitions in other languages 566
 11.1.3 Interface design 567
 11.1.4 Testing with evaluation 567
 11.2 First correctness properties 569
 11.3 Specifying requirements on a function to be defined 574
 11.4 Correctness of an optimized binary search algorithm 575
 11.5 Summary and looking ahead 576
 11.6 Additional exercises 577

12 A Fast Exponentiation Algorithm 579
 12.1 Mathematical background 579
 12.2 Strong induction 581
 12.3 Properties of half 583
 12.4 Properties of odd and even 587
 12.5 Properties of power 590
 12.6 Properties of fast-power 591
 12.7 Tail recursion, a potential optimization 593
 12.8 Transforming strong induction into ordinary induction 596
 12.9 Measure induction 598
 12.10 Summary and looking ahead 599
 12.11 Additional exercises 600

13 Euclid’s Algorithm for Greatest Common Divisors 603
 13.1 Quotient and remainder 603
 13.2 The division algorithm 605
 13.3 Divisibility 608
 13.3.1 A cancellation lemma 610
 13.3.2 Proof of the characterization theorem 610
 13.3.3 Additional properties of divisibility 611
CONTENTS

13.4 Euclid’s algorithm 616
13.5 Summary 621
13.6 Additional exercises 621
13.7 Chapter notes 623

V PROOFS AT AN ABSTRACT LEVEL 625

14 Abstract Structures 627
14.1 Group properties 627
14.2 Theory refinement 631
14.3 Writing proofs at the level of a theory 635
14.4 Abstract proof method conventions 638
14.5 Dynamic evolution of theories 641
14.6 Testing abstract proofs 642
14.7 Group theory refinements 644
 14.7.1 Abelian group theory 644
 14.7.2 Multiplicative theories 646
 14.7.3 Ring theory 649
 14.7.4 Integral domain 652
 14.7.5 Algebraic theory diagram 652
14.8 ★ Permutations as a group 654
 14.8.1 Function theory 654
 14.8.2 Permutation theory 658
14.9 Ordering properties at an abstract level 664
 14.9.1 Binary-Relation 664
 14.9.2 Irreflexive 665
 14.9.3 Transitive 666
 14.9.4 Strict partial order 666
 14.9.5 Nonstrict partial orders 668
 14.9.6 Strict weak order 671
 14.9.7 A preorder 674
 14.9.8 Strict total order 674
 14.9.9 Lists over a strict weak order 674
 14.9.10 Relational theory diagram 678
14.10 Additional exercises 678

15 Abstract Algorithms 683
15.1 An abstract binary search algorithm 683
 15.1.1 Abstract-level binary search trees 687
 15.1.2 Abstract-level binary search correctness theorems 688
CONTENTS

15.2 An abstract fast-power algorithm 690
 15.2.1 Raising to a power in a monoid 690
 15.2.2 A monoid version of fast-power 693
 15.2.3 Multiplicative version of fast power 699
 15.2.4 A nonnumeric application 699

16 Algorithms on Memory Abstractions 701
 16.1 Axioms and theorems for individual memory locations 701
 16.2 Iterators and ranges 706
 16.2.1 Iterator and range axioms and theorems 708
 16.2.2 Trivial iterator: The base of a hierarchy of iterator theories 713
 16.2.3 Forward iterators 716
 16.3 Range count algorithm 718
 16.4 Range replace algorithm 721
 16.5 Range copy algorithm 725
 16.6 Range copy-backward algorithm 730
 16.7 Adapters: Reverse-iterator and reverse-range 732
 16.8 Implementing copy-backward 735
 16.9 Random access iterators 738
 16.9.1 Relationships among iterator functions 739
 16.9.2 New properties of the length function 740
 16.9.3 Theorems about collecting locations 742
 16.9.4 Ordered range 746
 16.10 A binary search algorithm 748
 16.11 Summary and suggestions for continued study 753

VI PROOFS ABOUT PROGRAMMING LANGUAGES 755

17 A Correctness Proof for a Toy Compiler 757
 17.1 Interpreting and compiling numeric expressions 757
 17.1.1 Representation and notation 757
 17.1.2 Defining the interpreter 759
 17.1.3 An instruction set and a virtual machine 761
 17.1.4 Compiling numeric expressions 764
 17.1.5 Correctness 765
 17.2 Handling errors explicitly 773
 17.2.1 Extending the compiler with error handling 774
 17.3 Chapter notes 787