# Contents

Preface xiii

Part I  Design Principles 1

1  A VHDL Refresher 3
   1.1 Why This Book? 3
   1.2 What Is VHDL? 4
      1.2.1 Key Features of VHDL 5
      1.2.2 The LRM 6
      1.2.3 VHDL versus General-Purpose Languages 7
   1.3 Levels of Abstraction in Digital Systems 7
   1.4 A Summary of VHDL 9
      1.4.1 Entities and Architectures 9
      1.4.2 Statements in VHDL 11
      1.4.3 Concurrent Statements 11
      1.4.4 Sequential Statements 16
      1.4.5 Subprograms 21
      1.4.6 Expressions 22
      1.4.7 Packages 23
      1.4.8 Data Types 24
      1.4.9 Predefined Attributes 28
      1.4.10 Generics 29
   1.5 VHDL-2008 31

2  Design and Architecture 35
   2.1 What Is Design? 35
   2.2 Quality Measures 37
      2.2.1 Design Qualities 38
      2.2.2 Business Qualities 47
   2.3 Architecture 50
3 Design Challenges 53
  3.1 Complexity 53
  3.2 Changes 55
  3.3 Dependencies 56
  3.4 Duplicate Information 57
  3.5 Technical Debt 58
  3.6 Your Wetware 60
    3.6.1 Recognition versus Recall 61

4 Design Principles 63
  4.1 Modularity 63
    4.1.1 What Is a Module? 63
    4.1.2 Key Benefits of Modularity 64
    4.1.3 Effectively Decomposing a System into Modules 65
  4.2 Abstraction 69
    4.2.1 Levels of Abstraction 69
    4.2.2 Key Benefits of Abstraction 71
    4.2.3 Using Abstraction Effectively 72
  4.3 Hierarchy 74
    4.3.1 Key Benefits of Hierarchy 75
  4.4 Loose Coupling 78
    4.4.1 Types of Coupling 79
    4.4.2 Decoupling 80
  4.5 Strong Cohesion 81
  4.6 The Single Responsibility Principle 83
  4.7 Orthogonality 84
    4.7.1 Guidelines for Creating Orthogonal Systems 85
  4.8 Single Source of Truth (The DRY Principle) 86

Part II Basic Elements of VHDL 89

5 Analysis, Elaboration, and Execution 91
  5.1 VHDL in the System Design Flow 91
  5.2 The Design Processing Flow 93
  5.3 Overview of the Analysis and Elaboration Process 96
  5.4 Detailed View of the Analysis Phase 98
    5.4.1 Lexical Analysis 98
    5.4.2 Lexical Elements 99
    5.4.3 Syntax Analysis 101
    5.4.4 Semantic Analysis 103
  5.5 Detailed View of the Elaboration Phase 104
8.3 Attributes 172
8.4 Guidelines and Recommendations for Operators, Operands, and Attributes 180

Part III Statements 185

9 Concurrent Statements 187
9.1 Introduction 187
9.2 The process Statement 188
  9.2.1 The Ins and Outs of VHDL Processes 189
  9.2.2 The Sensitivity List 192
  9.2.3 Equivalence between Processes and Other Concurrent Statements 198
  9.2.4 Guidelines and Recommendations for Writing Processes 201
9.3 The Concurrent Procedure Call Statement 203
9.4 The Component Instantiation Statement 205
9.5 The generate Statement 209
  9.5.1 General Remarks about generate Statements 216
9.6 Other Concurrent Statements 217
  9.6.1 The block Statement 217
  9.6.2 The Concurrent Signal Assignment Statement 220
  9.6.3 The Concurrent Assertion Statement 221

10 Sequential Statements 223
10.1 Control Structures 223
  10.1.1 The Problems with Deep Nesting 224
10.2 The if Statement 224
  10.2.1 Guidelines for the if Statement 225
10.3 The case Statement 230
  10.3.1 Guidelines for the case Statement 232
10.4 Loops 234
  10.4.1 Kinds of Loops 234
  10.4.2 Auxiliary Loop Control Statements 236
  10.4.3 Loops in Hardware 238
  10.4.4 Guidelines for Using Loops 242
10.5 The wait Statement 246
  10.5.1 Synthesizable wait Statements 250
10.6 The assert Statement 251
  10.6.1 When to Use an Assertion 251
  10.6.2 When Not to Use an Assertion 253
  10.6.3 Severity Levels 253
10.7 The null Statement 253
Contents

11 Assignment Statements 255
   11.1 Kinds of Assignments in VHDL 255
       11.1.1 Classification by Target Class (Signal vs. Variable) 255
       11.1.2 Classification by Assignment Statement (Simple vs. Conditional vs. Selected) 260
       11.1.3 Classification by Kind of VHDL Code (Sequential vs. Concurrent) 263
   11.2 Assignment Sources and Targets 265
       11.2.1 Assignment Sources 265
       11.2.2 Assignment Targets 267
   11.3 Assignments with Timing and Delay 269
       11.3.1 Delay Mechanisms 270
   11.4 Force and Release Assignments 272

Part IV Types and Objects 277

12 Categories of Types in VHDL 279
   12.1 Overview of Data in VHDL 279
       12.1.1 Types in VHDL 280
       12.1.2 Objects in VHDL 280
       12.1.3 Object Classes 281
       12.1.4 Use of the Terms class and object in VHDL and Object-Oriented Languages 282
       12.1.5 What Does Strongly Typed Mean? 284
   12.2 VHDL Type Hierarchy 286
       12.2.1 Scalar Types 287
       12.2.2 Composite Types 293
       12.2.3 Access Types 298
       12.2.4 File Types 302
       12.2.5 Protected Types 302
   12.3 Subtypes 305
   12.4 Resolved Types 309

13 Predefined and User-Defined Types 313
   13.1 Predefined and Standard Types 313
   13.2 Types and Packages for Integer Values and Operations 324
   13.3 Converting between Types 329
   13.4 Abstract Data Types 335
   13.5 Other Recommendations on Using Types 340
## Contents

19.5 Initialization and Reset 516  
19.6 Pragmas 518  
   19.6.1 Synthesis Attributes 518  
   19.6.2 Metacommments 521  

20 Testbenches 523  
   20.1 Introduction 523  
      20.1.1 Test or Verification? 525  
      20.1.2 Functional Verification 525  
      20.1.3 What Should We Test? 525  
      20.1.4 Self-Checking Testbenches 527  
      20.1.5 Basic Parts of a Testbench 527  
      20.1.6 What is the Output of a Testbench? 528  
      20.1.7 Test-Driven Development 528  
   20.2 Example #1: Testbench for a Combinational Circuit 530  
   20.3 Example #2: Testbench for a Clocked Circuit 541  
   20.4 Example #3: Testbench for an FSM 547  
   20.5 Example #4: Testbenches with File I/O 555  
   20.6 Random Stimulus and Functional Coverage 559  
      20.6.1 Functional Coverage 559  
      20.6.2 Directed Testing 559  
      20.6.3 Random-Based Verification 559  
      20.6.4 Intelligent Coverage 559  
      20.6.5 Coverage Bins 560  
      20.6.6 VHDL and Random-Based Verification 560  
   20.7 Example #5: Testbench with Random Stimulus and Functional Coverage 561  
   20.8 Example #6: FSM Transition Coverage 566  
   20.9 Conclusion 572  

Notes 575  
Bibliography 583  
Index 585