Contents

Prologue xvii

Acknowledgments xxxi

Notation xxxv

1 Introduction 1
 1.1 Theory .. 3
 1.2 Data ... 4
 1.3 At the End of the Day 7

2 Productivity Tools 9
 2.1 Opening a Terminal Window 9
 2.2 Working on the Command Line 10
 2.3 Some UNIX Commands 10
 2.3.1 Getting Your Bearings 11
 2.3.2 Learning about Commands 12
 2.3.3 Seeing What’s There 12
 2.3.4 Filenames .. 14
 2.3.5 Reserved Characters 15
 2.3.6 Case Sensitivity 16
 2.3.7 Redirecting Output 17
 2.3.8 Examining the Contents of a File 18
 2.3.9 Comparing Files 20
 2.3.10 Pathing ... 20
 2.3.11 Changing Locations 21
 2.3.12 Creating Directories and Subdirectories 22
CONTENTS

2.14 Archiving Files .. 56
2.15 Version Control ... 57
2.16 Package Managers ... 58
2.17 UNIX File Systems ... 58
2.18 Uniform Resource Identifiers 60

3 Organizing Data ... 61
 3.1 Spreadsheet .. 61
 3.2 Data Modeling .. 63
 3.2.1 Entity-Relationship Model 64
 3.2.2 Database Normalization 66
 3.3 Relational Algebra ... 67
 3.4 Basic SQL .. 75
 3.5 Solved Example ... 82
 3.5.1 Designing Databases and Tables 83
 3.5.2 Using Excel to Create Tables for SQLite 84
 3.5.3 Creating a SQLite Database and Its Tables 86
 3.5.4 Importing csv Files into SQLite 93
 3.5.5 Querying the RDB .. 94
 3.6 NoSQL ... 109
 3.6.1 XML .. 117
 3.6.2 JSON .. 118
 3.6.3 YAML and BSON ... 119

4 Simple Programming .. 121
 4.1 Python .. 121
 4.1.1 IDE or Not? ... 123
 4.1.2 Useful Website .. 124
 4.2 Important Concepts in Computer Science 124
 4.3 Basic Grammar .. 125
 4.3.1 Version 2 or 3? ... 125
 4.3.2 Classic Exercise ... 125
 4.3.3 Data Types ... 126
 4.3.4 Python Backslash Characters 147
 4.3.5 A Digression on Character Sets 147
 4.3.6 Single or Double or Triple Quotes? 149
CONTENTS

4.3.7 Functions .. 151
4.3.8 Input/Output 154
4.3.9 Loops ... 158
4.3.10 Conditional Statements 159
4.3.11 While .. 160
4.3.12 Indentation, Whitespaces, and Tabs 161
4.3.13 Exceptions 164
4.3.14 Recursion 165
4.3.15 Keywords Not Yet Introduced 166
4.3.16 Modules ... 166
4.3.17 Packages .. 169
4.3.18 Different Ways to Execute Python Scripts 170

4.4 Useful Modules and Packages 172
4.4.1 copy .. 173
4.4.2 math ... 173
4.4.3 numpy ... 173
4.4.4 matplotlib 173
4.4.5 pandas ... 174
4.4.6 scipy .. 174
4.4.7 ipython ... 175
4.4.8 sys ... 175
4.4.9 os ... 175
4.4.10 csv ... 176
4.4.11 json ... 176
4.4.12 sqlite3 ... 177
4.4.13 re ... 177
4.4.14 nltk ... 177
4.4.15 urllib and urllib2; requests 177
4.4.16 distutils 178
4.4.17 f2py .. 178
4.4.18 numba .. 178
4.4.19 xml ... 178
4.4.20 Tkinter ... 179
4.4.21 Abbreviating Module and Package Names 179

4.5 Python Template 179
4.6 Design Documents, Flowcharts, and Unit Testing 181
CONTENTS

4.7 Miscellaneous Topics .. 183
4.8 Bringing It All Together .. 184
 4.8.1 Reading and Writing Numeric Data 185
 4.8.2 Reading in Mixed Numeric and String Data 189
 4.8.3 Creating a Histogram and an edf 192
 4.8.4 Creating a Figure with \TeX Characters 197
 4.8.5 Creating a Scatterplot .. 199
 4.8.6 Creating a \LaTeX Table 202
 4.8.7 Creating a SQLite Database 207
 4.8.8 Downloading Data from the Internet 209
 4.8.9 Manipulating Text Using Regular Expressions 210

5 Analyzing Data ... 225
 5.1 Is Your Answer Right? ... 225
 5.2 Methods of Sampling Data ... 228
 5.2.1 Opportunity Sampling .. 229
 5.2.2 Prospective Sampling ... 230
 5.2.3 Random Sampling ... 231
 5.2.4 Choice-Based Sampling 231
 5.3 Useful Data Formats ... 232
 5.4 R System ... 233
 5.4.1 Getting R and Its Packages 234
 5.4.2 RStudio IDE ... 234
 5.4.3 Basic R Grammar ... 235
 5.4.4 Types of R Objects .. 242
 5.4.5 Reading in Data ... 250
 5.4.6 Descriptive Statistics .. 253
 5.4.7 Flow Control and Loops 259
 5.4.8 Figures and Graphs .. 261
 5.4.9 Regressions .. 267
 5.4.10 Batch Scripts .. 272
 5.5 Useful R Packages .. 276
 5.5.1 Reading in Data .. 277
 5.5.2 Manipulating Data .. 277
 5.5.3 Plotting Figures .. 282
 5.5.4 Time-Series Data .. 282
5.5.5 Improving Code Performance .. 283
5.5.6 Estimating Various Models 287
5.5.7 Reporting Results .. 288
5.5.8 Other Packages .. 289
5.6 Connecting R to SQLite ... 289
5.7 Python Library pandas ... 292
5.8 Python or R? ... 301
5.9 Training, Validation, and Testing 302
5.9.1 Precision and Recall; ROC Curves 303
5.10 Fixed-Effect Regressions ... 308
5.10.1 Least-Squares Estimator of θ 311
5.10.2 What to Do with It All ... 312

6 Geek Stuff 317
6.1 Hardware ... 317
6.1.1 What Does It All Mean? 323
6.1.2 Raspberry Pi .. 323
6.2 Algorithmics ... 325
6.2.1 Analysis and Evaluation 327
6.2.2 Sorting Algorithms .. 333
6.2.3 Complexity Classes .. 334
6.2.4 Exploiting Complexity in Computer Security 337
6.2.5 What Does It Mean? ... 338
6.2.6 Further Reading ... 339
6.2.7 Approaches to Algorithmic Design 339
6.3 Some Programming Paradigms 345
6.3.1 Imperative Programming 345
6.3.2 Procedural Programming 346
6.3.3 Declarative Programming 347
6.3.4 Object-Oriented Programming 348
6.3.5 Functional Programming 352
6.3.6 Programming Languages and Paradigms 353
6.4 Graph Theory .. 353
6.4.1 Some Theorems .. 357
7 Numerical Methods

7.1 Round-off and Truncation Errors

7.1.1 Classic Example of Smearing

7.1.2 Summary

7.2 Linear Algebra

7.2.1 Condition Number

7.2.2 Solving a Linear System

7.2.3 Cholesky Decomposition

7.3 Finding the Zero of a Function

7.3.1 Bisection Method

7.3.2 Newton-Raphson Method

7.4 Solving Systems of Nonlinear Equations

7.4.1 Newton-Raphson Method

7.4.2 Jacobi Method

7.4.3 Gauss-Seidel Method

7.4.4 Using the Methods

7.4.5 Solving Nonlinear Equations Using Python

7.5 Unconstrained Optimization

7.5.1 Newton-Raphson Method

7.5.2 Quasi-Newton Methods

7.5.3 Line Search versus Trust Region Methods

7.5.4 Adjusting a Hessian Matrix

7.5.5 Scaling

7.5.6 Gradient Descent

7.5.7 Conjugate Gradient

7.5.8 Stochastic Gradient Descent

7.5.9 Derivative-Free Methods

7.5.10 Numerical Optimization in Python

7.6 Constrained Optimization

7.6.1 Linear Programming

7.6.2 Dual Representation

7.6.3 Quadratic Programming

7.6.4 Convex Optimization

7.6.5 Nonlinear Programming

7.7 Approximation Methods

7.8 Numerical Integration
CONTENTS

7.8.1 Newton-Cotes Formulae ... 450
7.8.2 Monte Carlo Methods .. 452
7.8.3 Quasi-Monte Carlo Methods 456
7.8.4 Gaussian Quadrature .. 456
7.9 Solving Differential Equations 465
 7.9.1 Initial- and Boundary-Value Problems 467
 7.9.2 Finite Difference Methods 468
 7.9.3 Finite Element Methods 475
7.10 Simulation .. 477
 7.10.1 Distribution of the cdf 477
 7.10.2 Generating Random Numbers 479
 7.10.3 Pseudo-Random Numbers 480
 7.10.4 Seeding the PRNG .. 482
 7.10.5 Introducing Dependence 483
 7.10.6 Antithetic Variates ... 486
 7.10.7 Control Variates ... 487
 7.10.8 Importance Sampling 490
 7.10.9 Markov Chain Monte Carlo 491
7.11 Figures and Graphs ... 496

8 Solved Examples .. 499
 8.1 Linear Algebra: Portfolio Allocation Problem 499
 8.2 Unconstrained Optimization: Duration Model 504
 8.2.1 Putting Structure on $f_T(t)$ 504
 8.2.2 Loosening the Structure on $f_T(t)$ 510
 8.2.3 Cox Proportional Hazard Rate Model 512
 8.2.4 Training the Model 515
 8.2.5 Putting It All Together 517
 8.3 Linear Programming: LAD-Lasso Estimator 521
 8.4 Quadratic Programming: Support Vector Machines 527
 8.4.1 Hinge Loss Function 531
 8.4.2 Support Vector Machines 532
 8.4.3 Implementing SVM in Python 534
 8.4.4 Alternative Solution Strategies 538
 8.5 Numerical Integration: Gauss-Hermite Quadrature 539
 8.6 Simulation: Demand for Change 542
CONTENTS

8.7 Resampling: Quantifying Variability .. 548
 8.7.1 First-Order Asymptotic Methods 549
 8.7.2 Bootstrap ... 556
 8.7.3 Jackknife ... 561
 8.7.4 Subsampling ... 563
8.8 Makefile: Dealing with Dependencies 564
8.9 Git: Version Control ... 568
 8.9.1 Theory ... 570
 8.9.2 Example ... 574

9 Extensions to Python ... 589
 9.1 Profiling Python Code ... 592
 9.2 C Programming Language .. 593
 9.2.1 Basic Grammar .. 594
 9.3 C Extensions to Python ... 614
 9.4 FORTRAN Programming Language 617
 9.4.1 Basic Grammar .. 617
 9.5 FORTRAN Extensions to Python .. 628
 9.6 Numba ... 629

10 Papers and Presentations ... 631
 10.1 LATEX ... 633
 10.1.1 Notation ... 638
 10.2 BIBTEX .. 641
 10.3 Beamer ... 649
 10.4 Incorporating PGF/TikZ Figures .. 656
 10.5 Other TEX/LATEX Tricks .. 658
 10.6 ConTEXt ... 658

11 Final Thoughts ... 661
 11.1 Amdahl’s Law ... 663
 11.2 MapReduce ... 664
 11.3 Summary ... 668

Appendices ... 669

A The Virtual Machine ... 671
CONTENTS

B Recommended Reading 675

References 681

About the Authors 695

Name Index 697

Subject Index 703