Index

Abbott, J., 17, 188
Access Boston, 87
Accidents, 2, 24, 26
automobile-bicycle interactions and, 103–104, 107–114, 124
economic issues and, 33–34, 40n17
multimode tickets and, 193, 196–197
Agglomeration economies, 171
labor and, 139–144
temporal externality and, 179–180
Aggregation
asynchronization costs and, 155–159
canonical macroscopic model and, 15–30
cruising for parking and, 45–48, 51–53, 57, 66–78
MSA data and, 166–167
parking models and, 48–49
private cost maximization and, 145–146
traffic flow theory and, 149–152
Ahlstrand, I., 17
Anas, A., 24, 37
Anderson, D., 191
Anderson, S., 48
Arnott, Richard, 3, 10, 22–23, 37, 48, 106, 151, 193
Association of Bike-Friendly Cities and Towns, 122–123, 128
Automobiles, 10. See also Parking automated control and, 25
bicycle interactions and, 103–104, 107–114, 124
import tariffs and, 97n30
licensing and, 4
mass transit and, 81–83
multimode tickets and, 188–189
operation costs and, 1
ownership rates and, 1
park-and-ride systems and, 219–220
physical length of, 28
staggered work hours and, 136 (see also Staggered work hours)
traffic flow theory and, 149–152
U.S. dominance of, 9
Average private cost, 19–20
Axhausen, K., 47
Beesley, M., 191
Belgium, 136
Bento, A., 3, 28, 197, 200, 203, 205
Berchman, J., 34
Berkeley (University of California), 150, 193
Berliant, M., 144
Bernick, M., 30
Bertini, R., 150
Bertrand, T., 22
Bhat, C., 29
Bicycles, 10, 16, 35
acceleration of, 106
advantages of, 106–107, 120
age demographics and, 115
Association of Bike-Friendly Cities and Towns, 122–123, 128
automobile interactions and, 103–104, 107–114, 124
availability and, 124
bottlenecks and, 106
cost of, 103–104
cross-country differences, 102–103
Denmark and, 104, 116–117
driver training and, 125
economic issues and, 110–112
environmental factors and, 104, 107, 117
Finland and, 117
Bicycles (cont.)
Germany and, 103–104, 114–116, 118, 120, 122–123, 125, 127
health benefits of, 103–104, 107, 120
hills and, 117
Holland and, 103–104, 111–119
individual characteristics and, 115–116
information problem of, 126–127
insurance and, 130n15
maintenance and, 124
mass transit and, 113–114
modal infrastructure and, 117–120
neighborhood interaction and, 104
parking and, 112, 123
policy framework for, 103–105, 120–128
popularity data for, 102
railways and, 114
role of, 102–105
rush-hour traffic and, 106
safety and, 103–104, 107–114, 118
separate traffic for, 112–114
sighting of, 101
sociocultural effects and, 102–104, 111–112, 115–116, 125–126, 130n18
Spain and, 116
spatial requirements of, 103–104
supply characteristics and, 105–114
technical considerations of, 106–107
theft of, 113–114
United Kingdom and, 104, 118, 129n7, 130n25
user ability and, 106
U.S./European differences and, 104, 111–118, 130n25
visibility and, 124
work commuting and, 129n3
BMVBW (German Ministry of Transport), 103–104, 114, 127
BMW (Bavarian Motor Works), 135–136, 160, 174
Borins, S., 17
Bose, A., 25
Boston Air Pollution Control Commission, 87
Boston model, 80, 97n31
Access Boston and, 87
five policy instruments of, 86–89
individual heterogeneity and, 86
mass transit and, 81–89
network density and, 82
Parking in Boston and, 87, 90
time and, 87
Boston Proper Parking Freeze, 97n33
Boston Transportation Department, 87
Bottlenecks, 23, 106, 150–151, 193
Bovenberg, L., 200
Boyer, M., 34
Braid, R., 3
Brathen, S., 220
British Medical Association (BMA), 103–104, 127
Brock, W., 144
Brög, W., 127
Brueckner, J., 144
Bruinsma, F., 106
Bullocks, 107
Bundesminister für Verkehr, 116
Buses, 16, 25. See also Mass transit
bicycles and, 113
multimode tickets and, 200–203
Calfee, J., 191
California, 4
Calthrop, E., 28, 48, 57
Cambridge, 17
Canada, 135–136
Canonical macroscopic model, 6
accidents and, 33–34
average private cost and, 19–20
basic, 2
bicycles and, 35 (see also Bicycles)
bottleneck model and, 23
capacity and, 27
congestion function and, 26
criticisms of, 24–30
demand functions and, 21–23, 29–30
driver choices and, 24–26
ing工程 issues and, 32–33
Envelope Theorem and, 21–22
freight regulation and, 30–31
land use and, 37
Lighthill-Whitman-Richards flow and, 23
marginal social cost and, 19–20
margins of choice and, 24–26
mass transit and, 34–35
noise and, 33
noncommuting trips and, 36–37
parking and, 22
pedestrians and, 35
policy and, 15–16
shopping hours and, 35–36
standard flow and, 16
travel distortions and, 28–29
uncivil driving behavior and, 34
Index 233

volume-capacity ratio and, 24
Wardrop principle and, 21
Cassidy, M., 27, 150, 193, 195
Central business districts (CBDs), 28–29
Cervero, R., 30
Chu, X., 150
Clapp, J., 65
Coase, Ronald, 111
Community Research and Development Information Service, 47
Congestion, 1. See also Automobiles; Parking
bottleneck model and, 23
canonical macroscopic model and, 15–30
economic theory of, 15–41 (see also Economic issues)
engineering issues and, 32–33
first-best pricing and, 2–4
fuel consumption and, 197
hypercongestion and, 57–58
intersections and, 16
link flow, 27–28
marginal external congestion cost and, 192–199
mass transit and, 82–83 (see also Mass transit)
multimode tickets and, 187–190 (see also Multimode tickets)
Pigouvian tax and, 138, 190, 213
public transportation deficit and, 211–213
rush hour and, 106, 142, 150–151, 159–160, 182n15
second-best pricing and, 3–5, 8, 22–23
staggered work hours and, 135–136, 149–152
traffic flow theory and, 149–152
Vickrey function, 152

Dagangzo, C., 150
Deal-making, 140
Debauch, W., 47
Demand functions, 21–23, 29–30
de Mooij, R., 200

Denmark
bicycles and, 116–117
Danish Commission on Traffic Safety, 104
staggered work hours and, 136
de Palma, André, 13, 17, 23, 48, 106, 136, 193
Dijkstra, L., 103, 111
Dionne, G., 34

Distortionary taxation, 28

Dixit, A., 32

Dominant firms
BMW and, 135–136, 160, 174
competitive fringe and, 160, 175–176
delay costs and, 163–164, 168–169
distortion and, 162–163
local profit maximum and, 162–164
market power and, 160–161
multiple employment locations and, 176
scale effects and, 166–167
Siemens and, 135–136, 160, 174
social optimum and, 161–162
Stackelberg leader and, 161, 174
staggered work hours and, 160–169
synchronization effects and, 165–166

Douglas, R., 47

Drivers, 2. See also Automobiles; Parking
automated control and, 25
bottleneck model and, 23
canonical macroscopic model and, 19–30
engineering issues and, 32–33
first-best congestion pricing and, 2–4
park-and-ride systems and, 219–220
uncivil behavior of, 34
user heterogeneity and, 22
vehicle ownership rates and, 1

Dun and Bradstreet, 167
Durlauf, S., 144

Economic issues, 1, 9
accidents and, 33–34, 40n17
agglomeration economies and, 28–29, 139–144
automobile-bicycle interactions and, 110–112
canonical macroscopic model and, 15–16
deal-making and, 140
delay costs and, 163–164
import tariffs and, 97n30
intra-day productivity effects and, 141–144
labor supply decision and, 3–4
localization and, 140–141
local profit maximum and, 162–164
London cordon scheme and, 6–8
mass transit and, 2 (see also Mass transit)
microeconomic method and, 16–17
microeconomics vs. macroeconomics, 15
microscopic model and, 15–16
Economies of scale, 139–141

Efficiency, 1. See also Equilibrium

Boston model and, 81–89

canonical macroscopic model and, 15–30

Laffer, 216

Lighthill-Whitman-Richards flow and, 23

Los Angeles model and, 64–81

multimode tickets and, 216

productivity and, 141–144 (see also Staggered work hours)

Elvik, R., 110

Engineering, 32–33, 38n1, 188

Envelope Theorem, 21–22

Environment

bicycles and, 104, 107, 117

fuel consumption and, 197

land use and, 23–24, 37, 41n21

pollution and, 16, 197–198

Equations

Boston model, 83–84

commuter’s budget constraint, 205

flow demand function, 51

individual travel time, 191

labor supply, 203, 206, 221–222

Lagrangian, 206

leisure, 204

Los Angeles model, 65–66, 69, 74, 76, 79

marginal external congestion cost, 192, 194

marginal social cost, 192

maximization, 206

tonotational glossary for, 227–230

public budget, 206

social surplus maximization, 20–21

staggered work hour model, 152–155, 157–158, 177–180

steady-state conditions, 50

toll, 208, 210–214, 216–217, 221–222

traffic density, 51

tavel time, 51

welfare compensation, 216–217

Equilibrium

asynchronization technology and, 155–159

bicycles and, 110–112

Boston model and, 81–89

bottleneck model and, 23

Henderson model and, 140–143, 146–150

Lighthill-Whitman-Richards flow and, 23

Los Angeles model and, 65–81

low-level trap, 131n30

mass transit and, 81–92

multimode tickets and, 203–206, 209, 218

no-toll competitive, 153–155

optimum, 145–148

parking and, 50–59

productivity and, 141–144

rush hour and, 159–160

social cost and, 52–54

staggered work hours and, 141, 145–149, 153–169

steady-state, 50–59

world price and, 141

Erl, E., 127

European Communities, 103, 116

European Union, 6–8

Evans, C., 27, 32

E-Z Pass system, 12n9

Face-to-face interaction, 140

Finland, 117
First-best congestion pricing, 2–4. See also Pricing systems Envelope Theorem and, 21–22

Flade, A., 115–116
Flextime, 181n1
Flow-capacity ratio, 152, 156
Frankena, M., 34
Freeways, 15
Freight regulation, 30–31
Fridstrøm, L., 197
Fuel consumption, 197
Fujii, S., 126
Fujita, M., 28, 144

Gärling, T., 126
Germany
bicycles and, 103–104, 114–116, 118, 120, 122–123, 125, 127
multimode tickets and, 189
Gillen, D., 48
Giuliano, G., 147, 169
Glazer, A., 48
Global positioning system (GPS), 9
Golob, T., 147, 169
Gómez-Ibáñez, J., 197
Government. See also Policy
Boston model and, 81–89
first-best congestion pricing and, 2–4
Los Angeles model and, 64–81
mass transit and, 2
staggered work hours and, 146–147
tolls and, 2–3
Gridlock, 1, 28, 39n11, 59
Guesnerie, R., 9

Happ, T., 116
Harwitz, M., 3, 17
Hauer, E., 24, 32
Hawaii, 135, 147, 169
Henderson, V., 140–143, 146–147, 149, 150
Herry, M., 47
Highway Research Board, 47
Hiles, J., 125
Ho Chi Minh City, 136
Holland
bicycles and, 103–104, 111–119
Ranstaad area, 4, 17
Hong Kong, 4, 17, 188
Horses, 107
Hu, P., 1

Hypercongestion, 57–58
Hysteresis, 116
Income tax, 3–4
Ingerbristen, S., 197
Institute for Road Safety Research, 122
Insurance, 24, 130n15
Inverted U-shaped locus, 67–68, 117
Ioannu, P., 25
Ireland, Republic of, 136

Jannson, J., 197
Johansson, O., 197
Jones, P., 220
Jones-Lee, M., 197
Jüttner, H., 189

Kanemoto, Y., 23, 32, 37
Kazimi, C., 197
Kenworthy, J., 117
Kim, I., 24
Kitamura, R., 126
Koppelman, F., 29
Kramer, D., 47
Kraus, M., 3

Labor, 3–4
agglomeration economies and, 139–144
dominant firms and, 160–169
family time and, 145
multimode tickets and, 203–222
multiple employment locations and, 176
no-toll competitive equilibrium and, 153–155
private cost maximization and, 145–146
productivity and, 153
reduced-form wage equation and, 141
rush hour and, 142
staggered work hours and, 136 (see also Staggered work hours)
supply equation for, 203
theory of externalities and, 143–144
urbanization and, 140–141
workers’ decision problem and, 206–207
Laffer efficiency, 216
Laffont, J.-J., 16, 32
Land use, 23–24, 37, 41n21
Leisure, 204
Lévy-Lambert, H., 22
Licensing, 4–7
Lighthill-Whitman-Richards flow, 23
Light rail transit (LRT). See Mass transit
Lindberg, G., 111
Lindsey, R., 23, 48, 106, 136, 187, 193
Link flow congestion, 27–28
Lisco, T., 191, 193
Litman, T., 6, 108
Livingstone, Ken, 6–7, 17–18
Localization, 140–141
Local profit maximum, 162–164
Lohmann, G., 116
Lomax, T., 1
London cordon scheme, 6–8, 17–18, 188, 208
Los Angeles model, 80–81
arithmetic parameters and, 69–74
demand functions and, 66
differing individuals and, 74–79
garages and, 65
identical individuals and, 65–69
lots and, 65
market segmentation and, 64
time value and, 74–79
visit length and, 76–78

McCarthy, P., 4
McLean, K., 135, 169
Manhattan, 136
Marchal, F., 136
Marchand, M., 22
Marginal Cost Pricing in Transport-
Integrated Conceptual and Applied
Model Analysis (MC-ICAM) group, 7
Marginal social cost, 19–20, 23–24, 234–240
Mass transit, 12n9
bicycles and, 113–114
Boston model and, 81–89
buses, 16, 25
Chicago and, 82
choice and, 25, 82
cost and, 82, 85–86
economic theory and, 34–35
economies of scale and, 83
flow demand and, 83
individual heterogeneity and, 86
Los Angeles model and, 64–81
multimode tickets and, 200–203 (see also
Multimode tickets)
network density and, 82
New York and, 81
Philadelphia and, 81
public transportation deficit and, 211–213
San Francisco and, 82
service frequency and, 34–35
time and, 85
tolls and, 2–3 (see also Tolls)
types of, 82
Washington, D. C. and, 81–82
Maximization, 20–21
May, A., 219
Mayeres, I., 20, 200
METROPOLIS, 136, 169, 183n19
Metropolitan statistical areas (MSAs), 166–167
Microscopic model, 6, 15, 18
Miller, T., 191, 196
Million Dollar Database, 167
Milne, D., 219
Ministerium für Wirtschaft und
Mittelstand, Energie und Verkehr des
Landes Nordrhein-Westfalen (MWMEV), 120, 123
Mohring, H., 3, 17, 19, 23, 34, 191, 201
Monopolies, 94n21
Mules, 107
Multimode tickets, 11
acceptance of, 189–190
accidents and, 193, 196–197
average private cost and, 191–194, 207–211, 214–215
bus commuting and, 200–203
congestion externalities and, 190–200
day-by-day decision and, 207–211
as entrance fee, 189
Germany and, 189
interpersonal communication and, 204–205
labor supply and, 203–222, 223nn10,11
literature on, 191–192, 195–196
London cordon scheme and, 188
marginal external congestion cost and, 192–199
modified Parry-Bento model and, 203–218
monthly, 214–215
park-and-ride systems and, 219–220
parking and, 195
policy for, 218–220
pollution and, 197, 200
public transportation deficit and, 211–213
queuing theory and, 195
shopping and, 203
Singapore scheme and, 187–188
social cost and, 192–195
Stockholm proposal and, 188–190
Index

taxes and, 190, 200, 211–214
travel time and, 191–200
welfare comparison for, 216–218
workers’ decision problem and, 206–207
Mun, S., 140
Neuenschwander, R., 47
Newbery, David, 7, 17, 27, 32, 195–197, 219
Newman, P., 117
New Zealand, 136
Nickel, B., 188–189
Nijkamp, P., 17
Niskanen, E., 7, 48
Noise, 2, 33
Noncommuting trips, 36
Norway, 220
Odeck, J., 220
OECD, 103, 117, 119, 125
Okumura, M., 179
Page, M., 120
Park-and-ride systems, 219–220
Parking, 5–6, 16, 18
automobile length and, 28
basic model for, 48–64
bicycles and, 112, 123
Boston model and, 81–89
canonical macroscopic model and, 22
city planners and, 45–46, 89–91
cruising for, 45–48, 51–53, 57, 66–78, 96n25
demand functions and, 48–49, 55, 66
downtown criteria and, 49–50
empirical study data for, 46
employer-provided, 79
equilibrium and, 50–59
fee determination and, 60–64
fixed-fee approach and, 47–48
garages and, 65, 80, 93n13
gridlock and, 59
hypercongestion and, 57–58
Los Angeles model and, 64–81
lots and, 65
mass media and, 45–46
mass transit and, 81–92
multimode tickets and, 195
policy analysis and, 59–64
queuing theory and, 59
resident, 80
saturated conditions and, 47–49, 52, 77
seniors and, 79
shopping centers and, 79–80
steady-state flow and, 50–59
subsidized, 79
time value and, 74–79
transportation planning and, 45
visit length and, 76–78
Parking in Boston (Boston Transportation Department), 87, 90
Parry, I., 2–3, 28, 197, 200, 203, 205
Pearce, L., 103
Pedestrians, 107
economic issues and, 35
multimode tickets and, 195 (see also Multimode tickets)
sidewalks and, 16
Phase 1, 2–3
Phase 2, 3–4
Phase 3, 8
Pigouvian tax, 138, 190, 213
Pindyck, R., 32
Polak, J., 47
Policy, 1, 10
bicycles and, 103–105, 120–128
Boston model and, 81–89
canonical macroscopic model and, 15–30
dominant firm effects and, 160–169
first-best congestion pricing and, 2–4
freight regulation and, 30–31
London cordon scheme and, 6–8, 17–18, 188, 208
Los Angeles model and, 64–81
microeconomic theory and, 16–17
multimode tickets and, 187–190, 218–220
parking and, 59–64
pricing systems and, 4–6
rule-of-thumb, 188
shopping hours and, 35–36
Singapore and, 4–5, 12n4, 17–18
staggered work hours and, 169–177
Pollution, 16, 197, 200
Pricing systems
canonical macroscopic model and, 19–30
cordon scheme and, 6–7
driver choice and, 24–26
interaction encouragement and, 39
licensing and, 4–7
literature on, 17
London cordon scheme and, 6–8, 17–18
MC-ICAM and, 7
multimode tickets and, 187–190, 214–218
park-and-ride systems and, 219–220
Pricing systems (cont.)
 phase 3, 8
 second-best, 3–5, 8, 22–23
 Singapore and, 4–5, 12n4, 17–18
 tolls and, 2–4 (see also Tolls)
 travel distortions and, 28–29
 “Problem of Social Cost, The” (Coase), 111
 Productivity, 141–144, 153
 Proost, S., 3, 20, 28, 48, 200
 Pucher, J., 103, 111

 Queuing theory, 59, 195

 Railways, 114. See also Mass transit
 Rave, Tilmann, 10
 Rickshaws, 107
 Rietveld, P., 17, 27, 106, 127
 Road Directorate, 104
 Road rage, 34

 Roads
 bicycles and, 112–114
 canonical macroscopic model and, 19–30
 capacity and, 5, 24, 27
 engineering issues and, 32–33
 freight regulation and, 30–31
 network design of, 2
 shoulders, 16
 surfaces of, 1
 tolls and, 2–3
 traffic flow theory and, 149–152
 Roback, J., 141
 Roberts, K., 9
 Rojey, L., 17
 Rollerbladers, 16
 Rotemberg, J., 27
 Roth, G., 47
 Rouwendal, J., 27
 Rowse, J., 48
 Rule-of-thumb policies, 188
 Rush hour, 106, 142, 150–151, 159–160, 182n15

 Safavian, R., 135, 169
 Safety. See Accidents
 Santos, Georgina, 7, 17, 195, 219
 SATURN, 7, 39n10
 Scale effect, 140–141
 Schöb, Ronnie, 11, 200, 213
 Schrank, D., 1
 Schuster, M., 47
 Second-best tolls, 3–5, 8, 22–23. See also
 Pricing systems
 Shepherd, S., 219
 Sherman, R., 22
 Shopping
 hours of, 35–36
 multimode tickets and, 203
 parking and, 79–80
 Shoulders, 16
 Shoup, Donald, 45
 Sidewalks, 16
 Siemens, 135–136, 160, 174
 Singapore, 4–5, 12n4, 17–18
 Sisiopiku, V., 197
 Small, K., 2–3, 22, 27, 32, 37, 196–197
 Solow, R., 23
 Spain, 116
 Stackelberg leader, 147, 161, 174
 Staggered work hours
 agglomeration economies and, 139–144
 asynchronization costs and, 151, 155–159, 171
 basic model for, 148–169
 BMW and, 135–136, 160
 competitive fringe and, 148, 160, 164, 175–176
 congestion and, 135–136, 149–152
 contextual characteristics and, 168–169
definitions for, 135
delay costs and, 158–159, 163–164, 168–169
demographics of, 136
dominant firm effects and, 160–169
economic issues of, 138–148
employee effects and, 136–137
equilibrium and, 141, 145–149, 153–169
firm collectivity and, 147–148
flextime and, 181n1
flow-capacity ratio and, 156
government and, 147
Henderson model and, 140–143, 146–150
localization and, 140–141
local profit maximum and, 162–164
multiple employment locations and, 176
non-work activity coordination and, 145
no-toll competition and, 153–155
policy issues of, 169–177
productivity and, 141–144, 153
purpose of, 136
reduced-form wage equation and, 141
Roback model and, 141
rush hour and, 142, 150–151, 159–160
scale effect and, 140–141
scheduling issues and, 136
Siemens and, 135–136, 160
social cost of, 136–139, 155–162
Stackelberg leader and, 161, 174
synchronization effect and, 140, 143–144
technology and, 142–143
theory of externalities and, 143–144
third-party effect and, 182n12
tolls and, 138–139
traffic flow theory and, 149–152
urbanization and, 140–141
urban planning and, 137
worker taste and, 159
Staggered-Work-Hours Demonstration Project, 135, 147
Standard Industrial Classification (SIC) code, 166
Steady-state flow, 50–59
Stockholm Urban Traffic Committee, 188
Street surfaces, 1
Strotz, R., 3, 17, 21
Strub, S., 47
Subways, 96n29. See also Mass transit
Sulfur dioxide, 16
Sumalee, A., 219
Sweden, 4, 17, 188–190
Switzerland, 117
Synchronization effect, 140, 143–144
Syski, R., 28
Tariffs, 97n30
Taxes, 200, 214
distortionary, 28
income, 3–4
Pigouvian, 138, 190, 213
public transportation deficit and, 211–213
Tay, R., 4
Taylor, M., 47
Technology, 16
asynchronization, 151, 155–159, 171
bicycles and, 124–125
congestion, 26, 149–152
customer needs and, 188
engineering approaches and, 188
GPS, 9
production, 142–143, 153
Tel-Aviv, 136
Temporal agglomeration externality, 179–180
Texas Transportation Institute, 1, 92n1
Theory of externalities, 158
economic issues and, 110–112, 143–144
multimode tickets and, 190–200
temporal agglomeration and, 179–180
Thisse, J.-F., 28
Thompson, R., 47
Thoulen, M., 47
3M Company, 136
Tiebout sorting, 40n19
Time, 24, 26
accidents and, 193
Boston model and, 81–89
buses and, 200–201
cruising for parking and, 45–48, 51–53, 57, 66–78, 96n25
delay data and, 1
individual travel equation, 191
leisure, 204
Los Angeles model and, 64–81
mass transit and, 85
mean travel, 1
multimode tickets and, 191–200
non-work activity scheduling and, 145
rush hour and, 106, 142, 150–151, 159–160, 182n15
shopping hours and, 35–36
steady-state conditions, 50
value of time (VoT), 34, 74–79, 196
Tirole, J., 16, 32
Tolls
bicycles and, 111
canonical macroscopic model and, 20–23
driver choice and, 24–26
first-best, 2–4
implementation issues and, 5
interaction encouragement and, 39
no-toll competitive equilibrium and, 153–159
phase 1 and, 2–3
phase 3 and, 8
Pigouvian, 138, 190, 213
second-best, 3–5, 8, 22–23
staggered work hours and, 138–139
Toronto, 136
Tractors, 107
Tradable pollution rights, 16
Traffic flow, 38n3
canonical macroscopic model and, 15–30
criteria of, 15
Lighthill-Whitman-Richards flow and, 23
link flow congestion and, 27–28
marginal social cost and, 19–20
modeling of, 15
theory of, 149–152
Traffic lights, 1
Trams. See Mass transit
Transportation Research Journal, 33
Transportation Science journal, 33
Travel. See also Congestion; Mass transit
demand functions and, 29–30
marginal social cost and, 19–20, 23–24
multimode tickets and, 187–190
noncommuting trips and, 36
park-and-ride systems and, 219–220
Trucks, 16, 18, 25, 30–31, 107
Turvey, R., 201

United Kingdom, 4
bicycles and, 104, 118, 129n7, 130n25
British Medical Association (BMA), 103–
104, 127
London cordon scheme and, 6–8, 17–18,
188, 208
National Cycle Strategy, 129
staggered work hours and, 136
United States, 4–5
automobile congestion of, 9
bicycles and, 104, 111–118, 130n25
Boston model and, 81–89
Bureau of Public Roads, 191
Census Bureau, 167
Department of Transportation, 47
Los Angeles model and, 64–81
vehicle ownership rates and, 1
Washington, D.C., 17, 136
Urbanization, 140–141
UTI, 189

Value of time (VoT), 34, 74–79, 196
van Dender, K., 3, 28, 48
Verhoef, E., 3, 17, 22–23, 27, 187
Vickrey, William, 2, 8, 17, 23, 33, 39n8
multimode tickets and, 187, 190, 193,
197
staggered work hours and, 150
Vickrey congestion function, 152
Victoria Transport Policy Institute, 127
Vng Uitgeverij, 114
Volume-capacity ratio and, 24
Vuuren, D. J., 106

Walters, A., 19, 190
Wardman, M., 120
Wardrop principle, 21
Washington, D.C., 17, 136
Weber, R., 118

Welfare
multimode tickets and, 190, 200, 216–218
taxes and, 190, 200, 211–213
Westin, R., 48
Wheaton, W., 22
Wilbur Smith and Associates, 47
Wilson, J., 22
Wilson, P., 141–142, 172
Wilson, R., 45
Winston, C., 27, 32, 191
World price, 141

Yan, A., 22
Yoshimura, M., 179
Young, J., 1
Young, W., 47
Zho, M., 197
Zoning, 181n8