Index

Access charges
and ability to innovate, 292, 293
and cost of innovation, 278–280, 290–292
and discrimination, 232–240
long-distance, 241–243, 254, 255, 258
network providers’ interest in, 372, 373
policy implications of, 220, 221, 278–280, 290–293, 370, 371
Adobe, 333
Adoption. See Cost of adoption; Deployment; Economic growth
ADSL. See Asymmetric Digital Subscriber Line; Asymmetric bandwidth
Advertising, 233–240, 253, 254, 314–318, 321, 322. See also Search-engine advertising
Advertising networks, 238, 239, 254
AdWords, 316, 317. See also Google AltaVista, 321
Amazon.com
early history and funding, 207, 210, 311, 320, 328, 333
and economies of scale, 143, 144
and incumbents, 320
and real-options approach to uncertainty, 146
America Online. See AOL
Andreessen, Marc, 307–309, 320, 321, 338
Android, 391
Angel investors, 207–210, 312
Antitrust law, 25, 31, 218, 219, 273
AOL
business model of, 231, 236
and discrimination, 258, 267
early funding of, 333
as incumbent, 320, 322
merger with TimeWarner, 250, 251
increasing switching costs, 262
Instant Messenger, 146, 250, 251
Apache Web Server
as component of open-source software stack, 144
cost of making available, 143
early history of, 321, 337–339, 341
and free revealing, 341, 345
as user-driven innovation, 337
Apple, 198, 332, 350. See also App Store; iMac; iPhone
Appliances, 387
Application autonomy, 71, 72, 106, 107. See also Broad version
Application awareness, 72–75, 217, 218, 286–289. See also Controllable architecture; Deviations from broad version
Application blindness, 72–75, 217, 218, 286–289, 379. See also Discrimination; Network neutrality
Application control, 72–74, 217, 218, 286–289. See also Controllable architecture; Control over application deployment; Control over application development; Control over network use
Application layer, 84, 87, 88. See also Applications; Broad version; Deviations from broad version
Application-layer multicast, 159–161
Application-level intermediaries, 92, 107–110, 383–385
Application programming interfaces (APIs)
and autonomous innovation, 120
availability of, 202, 203
cost of innovating on, 119, 121, 128, 135
and systemic innovation, 121, 199, 200, 214
terminology of, 47, 48
Applications
cost of innovation in, 138–148, 289–292, 385, 386
dependencies on, 88–90, 145
deployment requirements for, 140, 144, 145, 152, 155, 293–295, 349–351, 385, 386 (see also Control over application deployment; Deployment context)
and end-to-end arguments (see End-to-end arguments, technical constraints on)
innovation in (see Broad version; Deviations from broad version)
rate of change of, 144–147, 155–157, 351, 353
specific (see specific applications)
types of (see Client-server applications; Peer-to-peer applications; Server-based applications; Web-based applications)
Application-specific functionality, 67, 68, 76. See also Broad version; General functionality
compression as, 71
collection-orientation as, 97–99
lowest layer implementing, 86, 87, 98, 380
reliable data transfer as, 97–103, 139, 140
Application-specific transport prices, 273–275, 373. See also Pricing of Internet services
App Store, 350
Architecture. See also Network architecture
and characteristics of actors, 30
cost of innovation, 115–118
design principles for (see Broad version; Integrated design; Layering; Modularity; Narrow version; Relaxed layering)
and design teams, 167, 168, 323, 324
and economic constraints, 26, 28, 31, 32
and economics, 3, 4, 11–15, 32, 33, 387–389, 392
and economic systems, 28, 32, 33
and firm strategies (see Strategic choices of system architects; Strategic design)
and functional requirements, 3, 21, 22, 32
and innovation, 28–33, 115–118, 165, 166, 215, 216
legal constraints, 26–28, 31, 32
and market structure (see Market structure)
and organization of detailed design
and innovation, 165, 166
as politics, 19, 20
and product development process, 20
as quality, 21–23
and regulation, 24–28, 31, 32
and relationships among actors, 31
and social norms, 26, 28, 31, 32
and system qualities, 21–23
terminality of, 19, 21
ARPANET, 206, 302, 307, 309, 337
ARPANET Host-to-Host Protocol (AHHP), 91
Ask Jeeves, 335
Asset specificity, 188. See also
Transaction cost
Asymmetric bandwidth
and application innovation, 70, 286, 352, 353
and applications, 70, 264, 265
and broad version, 70
in current Internet, 70, 264, 265, 286, 372
and political uses, 364
Asymmetric Digital Subscriber Line (ADSL), 70, 286. See also Asymmetric bandwidth
AT&T, 269, 312, 372
Auctions, 391, 392
AuctionWeb, 206
Autonomous change, 120, 121, 135, 136
Autonomous innovation. See also
Systemic innovation
in Internet architecture, 204–213
in modular architectures, 183–185, 197, 198
terminallogy of, 183
Average cost. See Economies of scale
Backlinks, 310
BackRub, 310
Backward compatibility. See also Visible module
of application-layer protocols, 146, 155–157
of Internet Protocol, 151, 152
of link-layer protocols, 150
terminality of, 136
of transport-layer protocols, 151, 152, 155–157
Bandwidth management. See Network management
Barnes & Noble, 320
Basecamp, 208, 335
Baxter’s law, 226
Behavioral economics, 33, 78, 264, 374, 375
Behlendorf, Brian, 337, 338
Benchmark Capital, 210
Berkman Center for Internet and Society, 335, 336
Berners-Lee, Tim, 302, 303, 308, 321, 337, 341
Best-effort service, 85, 142, 153, 154. See also Quality of service
Bezos, Jeff, 207, 311, 320
Bhatia, Sabeer, 304, 306
Bina, Eric, 308, 309
BitTorrent, 70, 88, 107, 143, 260, 261, 265, 266, 351, 363
Black, Fischer, 123
Blogger, 207, 209, 210, 347, 348
Bloglines, 210, 335, 341
Blogs, 348, 360, 361
Blumenthal, Marjory, 58
Bolt, Beranek and Newman, 302, 307, 309
Boundary choices of firms, 168–171. See also Coordination cost; Transaction cost
Bounded rationality, 33, 186, 300. See also Transaction cost
Brin, Sergey, 207, 307, 310, 316–318, 321, 322, 332
Broadband deployment, 365, 366, 370, 371
Broad version of end-to-end arguments, 67–81, 377–379
and ability to innovate, 204–213, 292, 293
Broad version of end-to-end arguments (cont.)
and amount of application innovation, 144–147, 351–356
and application blindness, 72–75, 217, 218, 286–289, 379
and application deployment, 144, 145, 152, 155, 293–295, 349–351
benefits of, 69–74, 355, 365
and broadband deployment, 365, 366, 370, 371
and client-server applications, 110
and cloud computing, 108–110, 384, 385
and narrow version, 75–81
and competitive strategies, 217, 218
and control over end hosts, 72, 387
and cost of application innovation, 138–148, 289–292, 385, 386
costs of, 74, 75, 365–368
in current Internet, 218, 286, 287, 368, 371, 372, 383–392
decision to deviate from broad version case-by-case, 77, 78, 367, 368, 373–375
and deep packet inspection (see Deep packet inspection)
and deployment requirements, 140, 144, 152, 153, 293–295, 349–351, 385, 386
deviations from (see Deviations from broad version)
and distributed applications with application-level intermediaries, 107–110, 383–385
and economic environment for application innovation, 285–295, 381–386
and economic environment for network use, 293, 294, 359–365
and e-mail, 108–110, 383, 384
and encryption, 367
and fate sharing, 104–106, 366, 382
and firewalls (see Firewalls)
future of as design principle, 103, 104, 355, 356, 368–371, 388, 389
and generality of end hosts, 387
history of, 58, 59, 90, 110–112
horizontal dimension of, 57, 58, 76
and independent innovation, 204, 211, 293, 345–348
and innovation without permission, 204, 211, 293, 345–348
and layering, 103–105
and middleboxes (see Middleboxes)
and mobile Internet, 389–392
and network-address translators (see Network-address translators)
and network neutrality, 72–74, 80, 81, 379
network providers’ interests in, 371–375
and non-discrimination, 72–74, 80, 81, 379
and organization of application innovation, 204, 210, 211, 292, 294
and original Internet architecture, 96–103, 110–112, 380, 381
and packet filters, 74, 75
and peer-to-peer applications, 110
policy implications of, 72–74, 80, 81, 103, 104, 387–392
and political Internet uses, 359–361, 364, 365
and quality of service, 104–107, 142, 366, 382
rationale behind, 79, 378, 379
and risk taking with respect to uncertainty, 147, 148, 294, 295, 352
and security, 366–368
social benefits of, 355, 365
social costs of, 365–368
social tradeoff regarding, 368–371
and stupid network, 107, 366, 382
and technical constraints on application design, 78, 103, 110, 380–384
and technical constraints on network evolution, 104–107, 366–368, 382
and type of application innovation, 144–148, 152, 155, 295, 352, 353
user choice (see Control over end hosts; User choice)
vertical dimension, 57, 58, 76
welfare implications of (see Social value)
Browser. See Web browser
BT, 372
Bursty traffic, 265
Bush, George W., 361
Butterfield, Stewart, 207, 305, 306, 347
Cable modem, 50, 153, 265
Cable networks
and access charges for unaffiliated Internet service providers, 236
asymmetric bandwidth in, 70, 265
and cost of switching to DSL, 262, 263
open access to, 2, 222, 231
and video over Internet, 312, 327
Cailliau, Robert, 302, 303
Campbell, Jim, 332
Capabilities
and network provider contracting, 346
as source of competitive advantage, 196
as source of inflexibility, 322–328
and vertical boundary choices of firms, 168–171, 195, 196, 346
Cerf, Vinton, 99
CERN, 302, 303, 321, 337, 338, 341
CertifiedEmail, 267
Chicken-and-egg problem, 245, 246, 249, 386
Cisco Systems, 333
Clark, David, 5, 58, 110–112
Clark, Jim, 307, 308, 309, 320, 321, 333
Clearwire, 392
Client-server applications
and broad version, 110
Internet optimized for, 70, 385, 386
rate of change of, 146
Cloud computing, 108–110, 384, 385
Code and Other Laws of Cyberspace (Lessig), 19
Codified information, 174
Cohen, Danny, 99
Cohesion, 41–44
Co-invention, 358, 359
Collective action
and deployment of Internet layer innovations, 158
and evolution of modular architectures with distributed ownership, 199, 200
Comcast, 260, 261, 265, 266, 312, 351
Commercial Internet, 157–163, 383.
See also Control over end hosts; Deployment context
Competitive strategies. See also
Strategic choices of system architects;
Strategic design
in application-aware architectures, 217, 218
and architecture, 215, 216
and pricing of Internet services (see Application-specific transport prices; Flat-rate pricing; Price discrimination; Usage-based pricing)
Complementary efficiencies. See
Internalizing complementary efficiencies argument
Complementary products, 232–240, 253–255, 258
Complementor, 196
Complexity
and architecture, 20, 21
and bounded rationality, 119, 124, 187, 188, 300
Complexity (cont.)
and broad version, 72, 74
coupling and interface, 41, 44
and integrated design, 45, 46, 119
and layering, 48–52, 55, 56
and limits to number of concurrent
projects in core-centered
architectures, 313
and modularity, 38, 40, 41, 43, 44, 50
and organization of design teams, 168
and performance, 22
and transaction cost, 186–188
and value of innovator diversity, 300

Conflinity, 304
Congestion management. See Network
management
Connectionless service, 85, 97–102,
380
Connection-oriented service, 87,
97–102
Constraints, 24
and actors, 30, 31
architecture as, 28–33
economic, 24–28, 31, 32
and economic systems, 24–33
functioning of, 30, 31
and innovation, 28–33
interactions among, 26–28, 31
legal, 24–28, 31, 32
and market structure (see Market
structure)
social norms as, 24–28, 31, 32
Consumer heterogeneity. See User
heterogeneity
Consumptive Internet uses, 360, 364
Content-based discrimination, 266–
270, 364, 365
Content policies, 267, 269, 365
Contracting for innovation, 194, 195,
345–348
Controllability, 286, 287. See also
Controllable architecture; Deviations
from broad version
Controllable architecture. See also
Deviations from broad version
amount of innovation in, 352–356
and economic environment for
innovation, 270–272, 289–295
terminology of, 288, 289
welfare implications of (see Social value)
Control over application deployment.
See also Control over end hosts
in mobile Internet, 390, 391
relevance of, 349–351, 365, 366, 370,
371, 382, 387
in wireline Internet, 72, 293, 294
Control over application development.
See also Control over end hosts
in mobile Internet, 390, 391
relevance of, 345–348, 351, 366, 387
in wireline Internet, 184, 185, 194,
195, 204, 211, 293, 294
Control over end hosts
and application innovation, 293–295,
345–351, 366, 370, 371, 382, 387
and broad version, 72, 387
in mobile Internet, 390, 391
and network use, 293, 294, 362–365,
371
in wireline Internet, 72, 152, 294,
295, 387
Control over network use. See also
Control over end hosts
in mobile Internet, 390, 391
relevance of, 362–365, 371
in wireline Internet, 72, 293, 294
Coordination
and deployment of Internet layer
innovations, 158
and evolution of Internet
architecture’s visible information,
213, 214
and evolution of modular
architectures with distributed
ownership, 199, 200
and middleboxes, 386
Coordination cost
and architecture, 179, 180
and design teams, 167, 168
and governance, 175–179
and integrated architectures, 180, 181
and modular architectures, 181–185
terminology of, 172–179
and transaction cost, 169–171
Copyright law. See Intellectual property law
Core-centered architecture. See also
Deviations from broad version
amount of innovation in, 352–356
and economic environment for innovation, 289–295, 313
terminology of, 289
welfare implications of (see Social value)
Core cost of innovation
and likelihood of innovation, 134–137
terminology of, 119
Core of network,
layers implemented in, 57, 58
terminology of, 50, 378, 384, 385
Corporate investors, 207–211, 333, 334.
See also Innovators
Correctness
and broad version, 79, 80
and integrated design, 45
and layering, 48
and modularity, 41, 42
and narrow version, 60–67, 79, 80
Cost of adoption. See Cost of deployment
Cost of change. See also Cost of innovation
Cost of distribution, 118, 137
Cost of innovation
at application layer, 138–148, 289–292, 385, 386
economic environment and, 116, 118
at Internet layer, 151–153, 383
at link layer, 148–151
terminology of, 118, 119
at transport layer, 151–153
Cost of operating server infrastructure, 143, 144
Cost of production, 118, 137
Cost of realizing an innovation, 115, 118, 119
Cost of system adaptation, 119, 135–137
Coupling
and correctness, 41, 42, 45
and cost of innovation, 119, 121
and modifiability, 40, 43, 44
terminology of, 38
Crocker, Steve, 99
Current Internet architecture. See also
Deviations from broad version
application awareness and application control in, 218, 287, 371, 372, 385
deviations from broad version in, 70, 218, 286, 287, 368, 371, 372, 383–387
opaqueness of, 286, 372, 385, 386
welfare implications of (see Social value)
Datagram, 85
Data transfer
reliable (see Error control)
unreliable, 85, 87 (see also General functionality)
Dearaol.com, 267
Deep packet inspection (DPI)
and application innovation (see Controllable architecture)
and available strategies (see Access charges; Discrimination; Price differentiation; Price discrimination)
and broad version, 72, 73, 107, 218, 385
in current Internet, 2, 287, 371, 372, 385
and layering, 73, 385
Del.icio.us, 205, 210, 328
Dependences. See Interdependencies
Deployment context
commercial Internet as, 152, 158–161, 294, 295, 383
as constraint on evolution of a technical system, 152–163, 383
and control over application deployment (see Control over application deployment)
and control over network use (see Control over network use)
enterprise network as, 159–161
and evolution of applications, 146, 147, 152, 155–157, 294, 295
and evolution of Internet layer, 157–163, 383
and evolution of transport layer, 155–157, 386
and IP mobile, 157, 158
and IPv6, 157, 158
and multicast, 157–161
and quality of service, 157, 158
as rules of game, 162, 163
terminology of, 152
Deployment control. See Control over application deployment;
User choice
Deployment, cost of, 119, 137, 138
Deployment requirements
for applications, 140, 144, 145, 152, 155, 293–295, 349–351, 385, 386
for Internet-layer protocols, 157
for link-layer protocols, 151
and network architectures, 138, 152
for transport-layer protocols, 156, 385, 386
Design, detailed, 20
Design principles, 23. See also End-to-end arguments; Modularity;
Integrated design; Layering; Relaxed layering
and economic systems (see Economic system for development and
production of technical system;
Economic system for use of technical system)
and innovation, 28–33
and system qualities, 23
Design teams, 167, 168, 323, 324
Deutsche Telekom, 263
Deviations from broad version. See also
Access charges; Controllable architecture; Control over application
deployment; Core-centered architecture; Discrimination; Price
differentiation; Price discrimination; Opaqueness
and ability to innovate, 210, 211, 292, 293
and amount of application innovation, 144–147, 351–356, 385, 386
and application deployment, 140, 144, 145, 152, 155, 293–295, 349, 351, 385, 386
and competitive strategies, 217, 218
and cost of application innovation, 138–140, 144–148, 289–292, 385, 386
and deep packet inspection (see Deep packet inspection)
deviations increasing controllability
(see Deep packet inspection; IP Multimedia Subsystem)
deviations increasing opaqueness
(see Asymmetric bandwidth; Deep packet inspection; Firewalls;
Network-address translators)
and economic environment for innovation, 285–295, 381–383, 385, 386
and firewalls (see Firewalls)
and middleboxes (see Middleboxes)
and network-address translators (see Network-address translators)
and packet filters, 74, 75
and risk taking with respect to uncertainty, 147, 148, 294, 295, 352
and type of application innovation, 144–148, 152, 155, 295, 352, 353
types of, 286–289
Digital Equipment Corporation, 309
Digital Millennium Copyright Act, 27
Digital rights management system, 26, 27
Digital Subscriber Line (DSL) networks, 69, 70, 262, 263. See also Asymmetric Digital Subscriber Line
Direct network effects, 229. See also Network effects
Discrimination
and access charges (see Access charges) and antitrust law, 218, 219, 273
and bandwidth management, 260, 261, 264–266, 350, 351, 363, 365
and competition in primary market, 218, 219, 255–266, 391, 392
content-based, 266–270, 364, 365
cost of, 259–264
incentives for, 218–273, 371–375
and incentives to innovate, 270–273, 289–292, 352–356, 370, 371
instead of exclusion, 260, 261
in mobile Internet, 259, 260, 390–392
without monopolization, 232, 251–255
politics and, 266–270, 364, 365
and price discrimination, 243, 275–278
regulation to prevent (see Network neutrality)
underlying tradeoff, 225
welfare implications of, 355–371, 375, 387, 388
Disruptive technology, 327, 328
Distributed denial-of-service attacks, 366, 367
Diversity. See Innovator diversity; User heterogeneity
Doerr, John, 332
DSL. See Digital Subscriber Line
eBay
early history and funding of, 206, 207, 210, 302, 304, 311, 312, 320, 328, 333, 334
economies of scale, 143
and incumbents, 207, 320
uncertainty surrounding, 302, 304,
Economic constraints, 24–28, 31, 32.
See also Constraints
Economic growth
and adoption of applications, 345, 363, 364
and free revealing, 345
and Internet, 357–359, 363, 364, 386
and user-driven innovation, 345
Economic system
and architecture, 28, 32
and constraints, 24–28
evolution of, 24, 26, 28
terminology of, 24
Economic system for development
and production of technical system
impact of architecture on (see Architecture; specific design principles)
impact of on architecture (see Cost of change; Design teams; Strategic design)
terminology of, 29
Economic system for use of technical system
impact of architecture on, 28, 361–365
impact of on architecture (see Deployment context; Strategic design)
terminology of, 28
Economic theory, 23–33. See also Behavioral economics; Bounded rationality; Rational-choice theory
Economies of scale and discrimination (see Monopoly preservation in complementary market exception; Monopoly preservation in primary market exception; More sales at market prices exception; Primary good not essential exception) and governance, 169, 171 as source of competitive advantage, 196, 319, 322
Electronic Frontier Foundation, 261, 267
E-mail application structure of, 92, 108–110, 383 cost of switching providers, 262, 263 early history of, 206, 302, 307, 309, 336, 337 requirements of, 97 social value of, 359, 360 and standardization, 87, 88 uncertainty surrounding, 302
Embeddedness. See Relationships among actors
Encryption, 62–66, 367
End hosts control over (see Control over end hosts) generality of, 366, 387, 390, 391 layers implemented on, 57, 58 terminology of, 50, 51, 108, 109, 378, 384, 385
End-to-end architecture, 287–295. See also Broad version amount of innovation in, 352–356 and economic environment for innovation, 289–295 terminology of, 287 welfare implications of (see Social value)
End-to-end arguments. See also Broad version; Narrow version comparison of two versions, 58, 59, 75–81 in current Internet, 371, 372, 383–392 history of, 58, 59, 90, 110–112 horizontal dimension of, 57–60, 75, 76 and original Internet architecture, 90–103, 110–112, 379–381 rationale for distinguishing between two versions, 58, 59, 75–81 vertical dimension of, 57–60, 75, 76
End-to-end execution of functionality examples of, 56, 57, 62–67, 90–101 terminology of, 63 transport-layer protocols and, 91, 92, 384
End-to-end function. See also Narrow version conditions creating, 62–65 encryption as, 62–66 error control as, 62–67 other examples of, 65 terminology of, 60, 61, 377
Enterprise network. See Deployment context
Evolutionary theory of innovation, 299–301
Evolvability of networks based on broad version, 69–71, 77, 78, 104–107, 138–148, 152, 155, 204, 205, 210, 211, 366–370, 382, 383. See also Broad version; General functionality

Excite, 304, 321, 328

Exclusion. See Discrimination

Exclusive content, 263

Exercise price, 122

Externalities
associated with congestion, 363
between different applications, 356, 357
between platform and applications, 199, 356, 357
associated with productive Internet uses, 360–363, 373

Facebook, 206, 210, 236, 328

Facilities-based competition, 219, 256, 264

Fair-use doctrine, 26

Fake, Caterina, 207, 305, 306, 347

Fanning, Shawn, 306, 320

Fate sharing, 101, 102, 105, 106, 366, 382

Federal Communications Commission, 241, 250, 251, 266, 391, 392

File sharing, 27. See also Peer-to-peer file sharing

File transfer application, 93, 97

Financial options, 122, 123

Firefox, 345

FirePower, 306

Firewalls
and applications, 385, 386
and broad version, 72, 73, 385
in current Internet, 1, 2, 286, 372, 385
and innovation, 78, 315, 368, 385, 386
and layering, 73, 385

Firm size
bias due to, 312, 325, 326
limits of, 313, 346

Fixed cost, 233, 234, 239. See also Economies of scale

Flat-rate pricing, 243, 265, 363. See also Pricing of Internet services

Fletcher, Mark, 335, 341

Flickr
early history and funding of, 207, 210, 304–306, 314, 347, 351
and real-options approach to uncertainty, 146
uncertainty surrounding, 304–306

Forced access. See Open access

Four11, 320

Free revealing, 341–345

Friendster, 210, 328

Friis, Janus, 216, 306, 307, 315

Functional requirements, 3, 21, 22, 32

Funding of innovation. See Angel investors; Corporate investors; Innovators; Venture capital

Future Internet architecture
and broad version, 103, 104, 355, 356, 368–371, 388, 389
coexistence of several architectures in, 162, 163
facilitating evolution of Internet layer in, 161–163
and narrow version, 384

Game Neverending, 305

Gates, Bill, 321

General functionality, 67, 68, 76. See also Application-specific functionality; Broad version
best-effort service as, 142
connectionless data transfer as, 97–99, 380
unreliable data transfer as, 97–103, 141, 380

General-purpose technology
and economic growth, 357–359
Internet as, 359
Gmail, 263, 350
Gnutella, 70, 265, 266
Google
 advertising and, 232, 238, 253, 314–318
 early funding of, 207, 209, 210, 321, 322, 328, 332, 333, 334
 early history of, 207, 307, 310, 314–318, 321, 322, 332
 and economies of scale, 143
 embeddedness and, 212, 213
 and evolution of search-engine business model, 314–318
 and incumbents, 207, 321, 322
 and mobile Internet, 389–392
 and real-options approach to uncertainty, 146
GoTo, 316–318
Governance, 168–171, 178–180, 185, 190, 192. See also Coordination cost; Transaction cost
Gross, Bill, 316–318
Harvard Law School, 335, 336
Harvard University, 206, 212
Heart, Frank, 302
Heinemeier Hansson, David, 208, 335, 341
Heterogeneity. See Innovator diversity; User heterogeneity
Hidden information
 and cost of innovation, 120
 dependencies of (see Interdependencies) in layered architectures, 46–48
 in modular architectures, 39, 40
 of protocols, 53
 terminology of, 39
Hidden module
 applications as, 145, 146
 likelihood of innovation on, 136, 137
 terminology of, 133
Hold-up, 188. See also Transaction cost
Hop-by-hop execution of functionality
 examples of, 56, 57, 62–67, 90–92, 95, 96, 102, 103, 384
 terminology of, 63
 transport-layer protocols and, 92, 384
Hotmail, 263, 304, 306, 320, 328
Hourglass metaphor, 89
Hourihan, Meg, 207, 209, 347, 348
HTTP. See Hypertext Transfer Protocol
Hybrid fiber coaxial (HFC), 70. See also Cable networks
Hyperbolic discounting, 374
Hypertext Transfer Protocol (HTTP), 88
 evolution of, 146, 156, 157, 213, 214
 firewall and NAT traversal of, 306, 386
 rate of change of, 146
Hypertext Transfer Protocol Daemon (HTTPD), 321, 338
IBM, 198
ICQ, 207–210, 320, 328
iMac, 45, 120, 121
Implementation, 20
IMS. See IP Multimedia Subsystem
Incentive intensity, 171, 189, 196
Independence, 176. See also Coordination cost; Interdependencies
Independent innovation. See Innovation without permission; Innovator diversity
Indirect network effects, 229. See also Network effects
Information hiding, 38–40. See also Hidden information; Visible information
Innovation
 and architecture, 28–33
 control over (see Control over application deployment; Control over application development; Innovation without permission)
 and deployment (see Deployment context; Deployment requirements)
by different types of innovators (see Innovator diversity; Innovators)
funding of (see Angel investors; Corporate investors; Innovators; Venture capital)
impact of design principles on (see specific design principles)
at layers of Internet architecture (see specific layers)
terminology of, 28, 115
theories of (see Evolutionary theory of innovation; Neoclassical theory of innovation; Neo-institutional theory of innovation)
third-party (see Innovation without permission; Innovator diversity)
uncertainty and (see Uncertainty)

Innovation without permission
in Internet architecture, 204, 211, 293
in modular architectures, 184, 185, 194, 195
relevance of, 345–348

Innovator diversity
in modular and integrated architectures, 116, 118, 197–200
in network architectures, 203–214, 292, 293, 313, 314
relevance of, 30, 116, 271, 272, 298–345, 349

Innovators
established firms as, 116, 271, 272, 311, 314, 319–330
funding of, 204–213, 312–314
non-commercial, 204–207, 211–214, 289, 292, 293, 313, 365
users as, 205, 206, 312, 313, 334, 345
venture-capital-backed, 198, 207–211, 214, 313, 328–334

Instant messaging
direct network effects in, 229, 231
early history of (see ICQ)
social value of, 359, 360

Instant Messenger. See AOL Instant Messenger

Integrated architecture. See Integrated design

Integrated design, 44
and ability to innovate, 197
benefits of, 44, 45
and cost of innovation in, 119–121
costs of, 45
and independent component design, 45
and industry structure, 196
and organization of detailed design, 180, 191, 192, 195
and organization of innovation, 180, 181, 192, 197
and risk taking with respect to uncertainty, 127
underlying tradeoff in, 46

Intel, 199, 200, 333

Intellectual-property law
and ability to innovate, 197
as constraint on innovators, 31, 197
and contracting for innovation, 194, 346
and free revealing, 342, 343

Internet and, 26, 27, 362
and likelihood of discrimination, 230
rationale behind, 342
and Schumpeterian competition, 249, 250

Intelligent networks, 108, 390

Interconnection fees, 265

Interdependencies. See also Independence; Reciprocal interdependence; Sequential interdependence
and cost of system adaptation, 119–121, 131
Interdependencies (cont.)
Index

requirements of, 70, 97, 99, 102, 142
social value of, 359, 360
Internetwork Transmission Control Protocol (ITCP), 90, 91, 94–101, 105
Intertemporal bias, 78, 374, 375
Intuit, 332
Investors. See Angel investors; Corporate investors; Venture capital
IP. See Internet Protocol
IP address, 85, 153, 154, 157
IP datagram, 85
iPhone, 350, 390C.3
IP multicast
deployment of, 157–163
standardization of, 153
IP Multimedia Subsystem (IMS)
deployment of, 372
as fully controllable architecture, 372
as strategic design, 389, 390, 392
IP protocol field, 75
IPv4, 153, 385
IPv5, 154
IPv6, 153, 154, 157, 158, 161–163
Isenberg, David, 107, 108
ITCP. See Internetwork Transmission Control Protocol
Java, 321, 332
Javasoft, 306
Kazaa, 307, 314, 315
Kleiner Perkins Caulfield and Byers, 210, 316, 332
Kraus, Joe, 209, 304
Last-mile networks, 264, 265. See also Cable networks; Digital Subscriber Line networks
Layer bridging. See Relaxed layering
Layering, 46, 47. See also Portability layer; Relaxed layering
benefits of, 48
costs of, 48, 49
and deep packet inspection (see Deep packet inspection)
and end-to-end arguments, 104, 105
and firewalls (see Firewalls)
and middleboxes (see Middleboxes)
and network-address translators (see Network-address translators)
in network architectures, 50–57
original Internet architecture and,
88–90
and packet filters, 74, 75
“pure” version of, 47
Layers, in Internet architecture, 84–88.
See also Application layer; Internet layer; Link layer; Transport layer
Laws. See Legal constraints
Lead users, 340
Legal constraints, 24–28, 31, 32.
See also Antitrust law; Intellectual property law; Network neutrality
Lessig, Lawrence, 19
Leveraging. See Discrimination
Levin, Max, 304
Link layer, 84, 85, 89. See also Relaxed layering
cost of innovation at, 148–151
dependencies on, 88–90, 148, 149
deployment requirements for
protocols at, 151
evolution of, 148–151
rate of change of protocols at, 149, 151
terminology of, 84, 85
Linux, 144, 345
Load coils, 69, 70
Long tail. See Niche markets
Lott, Trent, 361
Ludicorp, 207, 304, 306, 347
Macromedia, 332
Madison River Communications, 240–242
Mailroom layer, 53–57, 87, 155
MailWrangler, 350
Make-or-buy decisions, 168–171. See also Coordination cost; Transaction cost
MapQuest, 231
Marginal cost. See Economies of scale
Market failure, 375
Market for ideas. See Contracting for innovation
Market structure
and decision to acquire a real option, 133, 136, 137
and incentive to discriminate, 218, 219, 255–266, 391, 392
Maximum order statistics, 132
Maximum transmission unit (MTU), 49
McCool, Robert, 338
Measurement, 189, 190. See also Transaction cost
Media Player, 88, 230, 231
Merton, Robert, 123
Microsoft
early funding of, 333
and search-engine advertising, 237, 238, 253, 317
and World Wide Web, 320, 321, 339
Microsoft Network (MSN), 321, 322
Middleboxes. See Deep packet inspection; Firewalls; Network-address translators; Packet filters
and broad version, 72, 73, 385
in current Internet, 385
innovation and (see specific middleboxes)
and layering, 73–75, 385
Mirroring hypothesis, 182, 183, 195
Mobile Internet, 259, 260, 389–392
Mobile IP, 153, 154, 157, 158, 161–163
Modifiability. See also Option value; Real options
and architecture, 22
and broad version (see Evolvability of networks based on broad version)
and coupling, 44
and integrated architectures, 119–121
and layering, 48, 56
and modularity, 40, 43, 44
terminology of, 22
Modular cluster, 196, 197, 203, 204
Modularity, 38–40
and ability to innovate, 184, 185, 194–200
benefits of, 39–42
and control over module-level innovation, 184, 185, 194, 195, 198, 345–348
cost of innovation in, 120, 121
costs of, 40, 43
in design, 39
and distributed ownership of architecture, 199, 200
and independent component design, 38–40, 181–185, 192–195, 345–348
and industry structure, 196, 197
and innovation without permission, 184, 185, 194, 195, 198, 345–348
and mirroring hypothesis, 182, 183, 195
in network architectures, 50–57
and organization of detailed design, 181–183, 192–195
and organization of innovation, 183–185, 194, 195, 323, 324
and organization of production, 172
and original Internet architecture, 37, 379
in production, 39
and risk taking with respect to uncertainty, 127
underlying tradeoff in, 43, 44
in use, 39
Module-level tests, 182, 193
Modules, 38
Monopolist’s complementary product source of outside revenue exception, 240–243, 254, 255, 258
Monopoly
extension of, 225–242
preservation of, 242–251
terminating, 278, 279
Monopoly preservation in
complementary market exception, 249–253, 258, 259
Monopoly preservation in primary
market exception, 244–249
More outside revenue exception, 253–
255, 258
More sales at market prices exception, 252, 253, 258
Mosaic browser, 307–309, 320, 321
Mosaic Communications, 308, 309, 320
Moskovitz, Dustin, 206
MoveOn.org, 267
Mozilla, 338
Multicast. See Application-layer
multicast; IP multicast
Multiple access. See Open access
MySpace, 210, 328
MySQL, 144
Napster, 306, 210, 320, 328
NARAL Pro-Choice, 267, 269
Narrow version of end-to-end
arguments, 60–67, 377, 388
and additional lower-layer
implementation, 66, 67, 77
benefits of, 65, 66
and broad version, 75–81
costs of, 93
in current Internet, 383–385
and distributed applications with
application-level intermediaries, 92, 383, 384
economic effect of, 112
and encryption, 62–66
and error control (see Error control)
and fate sharing, 105, 106
history of, 58, 59, 90, 110–112
horizontal dimension of, 57–60, 75, 76
and original Internet architecture, 90–96, 103, 110–112, 380
and network neutrality, 72, 73, 80, 81
rationale behind, 79, 378, 379
and technical constraints on
application design, 65, 66, 93, 103, 380
vertical dimension of, 57–60, 75, 76
NASDAQ crash, 209, 317
NAT. See Network-address translators
National Center for Supercomputing
Applications (NCSA), 307–309, 338
Neoclassical theory of innovation, 298–302
Neo-institutional theory of innovation, 299–301
Net Option Value. See Option value
Network-address translators (NATs)
and broad version, 72, 73, 385
in current Internet, 1, 286, 372, 385
and innovation, 78, 315, 368, 385, 386
and layering, 73, 385
Network architecture(s)
and economic systems (see Economic
system for development and
production of technical system;
Economic system for use of technical system)
design principles for (see Broad
version; Layering; Modularity;
Narrow version; Relaxed layering)
firm strategies and (see Competitive
strategies; Strategic choices of system
architects; Strategic design)
and innovation (see specific design
principles; specific types of network
architectures)
network providers’ interests in,
371–375
Network architecture(s) (cont.)
private interests of network providers in, 371–375
public interest in, 355–371, 387, 388, 392
social benefits of, 355, 365
social costs of, 365–375
specific (see Current Internet architecture; Future
Internet architecture; Original
Internet architecture; X.25 protocol suite)
types of (see Controllable architecture;
Core-centered architecture; End-to-
end architecture; Opaqueness)
social value of (see Social value)
Network connections. See Relationships among actors
Network, core of. See Core of network
Network effects
competition in markets subject to, 228, 230
direct, 229
and discrimination (see
Complementary product source of
outside revenue exception;
Monopoly preservation in
complementary market exception;
Monopoly preservation in primary
market exception; More outside
revenue exception; More sales at
market prices exception; Primary
good not essential exception)
indirect, 229
in search engines, 237, 238, 253
terminology of, 229
Network management. See also Quality
of Service
and broad version, 74, 287
discriminatory, 260, 261, 264–266,
350, 351, 363, 365
regulation of, 2, 266
Network neutrality. See also
Discrimination
and access charges, 220, 221, 278–280
alternatives to, 218, 219, 256, 264,
273, 274
and antitrust law, 218, 219, 273
and broad version, 72–74, 80, 81, 379
and competition in Internet-services
market, 218, 219, 255–266
and disclosure requirements, 264
and narrow version, 72, 73, 80, 81
and network management, 266
overview of, 219–221, 273, 274
and quality of service, 220, 221
welfare implications of (see
Discrimination)
wireless, 391, 392
Network opacity. See Opaqueness
Network optimization. See Asymmetric
bandwidth; Firewalls; Load coils;
Network-address translators
Network protocols. See Protocols
NeXT, 303
Niche markets
cost of innovation and, 144, 145
deployment requirements and, 152,
155, 294, 295
innovator diversity and, 312, 318,
319, 325–328, 340, 352
Nintendo, 308
Non-discrimination. See Discrimination
Non-monopolization models, 251–255
Non-optimization. See also Broad version
costs of, 68, 69, 365, 369, 370
and evolvability (see Evolvability of
networks based on broad version)
and socially valuable uses, 364
social relevance of, 365, 371, 387, 388
Normal distribution, 130
Norms, as constraints, 24–28, 31, 32
Novell, 332
Omidyar, Pierre, 206, 302, 304
One monopoly rent argument. See also
Discrimination
exceptions to, 225–251
theory of, 222–225
Opaqueness. See also Asymmetric bandwidth; Core-centered architecture; Deep packet inspection; Firewalls; Network-address translators and amount of innovation, 286, 352, 353, 385, 386 and applications, 70, 264, 265, 385, 386 in current Internet, 286, 372 terminology of, 286 welfare implications of (see Social value)
Open access, 2, 219, 222, 256, 264 OpenNet Initiative, 268 Open-source software and cost of application development, 144, 336, 337 and free revealing, 341–345 motivations of developers of, 205, 337 social value of, 360 and user-driven innovation, 336, 337 Open standards, 185, 193, 199, 202, 213, 214 Operating system. See also Application programming interfaces and Internet-layer and transport-layer protocols, 202, 386 as portability layer, 47, 48 Opportunism, 170, 186–189. See also Transaction cost Optimization of network. See Asymmetric bandwidth; Firewalls; Load coils; Network-address translators Options. See Financial options; Option value; Portfolio; Real options Option value. See also Real options and differences among modules, 133–137 of integrated architectures, 126, 127 of modular architectures, 126, 127 of multiple experiments on a module, 128–137 terminology of, 123 Original Internet architecture, 83–88 and ability to innovate, 203–214 and availability of interface specifications, 202, 203 broad version and, 96–103, 380, 381 and cost of innovation, 137–163 and economic environment for application innovation (see End-to-end architecture) and firms’ governance choices, 201, 202 layering principle and, 88–90, 379, 381 narrow version and, 90–96, 103, 380 and structure of industries for development and production of Internet components, 203, 204 Oversubscription, 265 Overture, 316–318 Packet filters, 74, 75. See also Middleboxes Page, Larry, 207, 307, 310, 316–318, 321, 322, 332 PageRank, 310 PayPal, 147, 304, 328, 333, 351 Pay per click, 316, 317 Pearl Jam, 269 Peer interface, 52–55 Peer-to-peer applications and broad version, 110 and network optimization, 70, 264–266, 385, 386 Peer-to-peer file sharing and discriminatory bandwidth management, 260, 261, 264–266, 350, 351, 363, 365 as distribution mechanism, 143, 342, 365 social value of, 143, 342, 365 Perception, 311 Performance and architecture, 22 and broad version, 68, 69, 77, 78, 365, 367–370, 378, 379
Performance (cont.)
 and integrated design, 45
 and layering, 48, 49
 and modularity, 43, 45
 and narrow version, 66, 67, 77
Perl, 144, 337, 341
Permission. See Innovation without permission
Personal computer (PC)
 architecture of, 21, 199, 200
 cost of innovating on, 120, 121
 and layering, 47, 48
 and modularity, 39, 40, 43, 120, 121
PGPfone, 315
PHP, 144, 337, 341
Phyllo, David, 205
Physical network, 83, 84
Phyton, 144
Platform products, 199, 356, 357
Podcaster, 350
Portability layer
 Internet layer as, 89–96, 101, 148–151, 203, 379
 operating system as, 47, 48
 terminology of, 47
Portfolio, 125–127
Port numbers, 75
Postal layer, 53–57, 86
Postel, Jon, 99
PostgreSQL, 144
Price differentiation, 273–275. See also Pricing of Internet services
Price discrimination, exclusion to facilitate, 243, 275–278
Pricing of Internet services. See Application-specific transport prices; Flat-rate pricing; Price discrimination; Usage-based pricing
Pricing strategies. See Access charges; Pricing of Internet services
Primary good not essential exception, 226–232, 235, 246, 249, 252, 253, 254, 258
Principal-agent theory, 189, 331
Product development process, 20
Protocol peer, 51
Protocols, 51–57
 interfaces of, 52–56
 Internet, 84–88
Pyra Labs, 207, 209, 347, 348
Quality of service
 and broad version, 104–107, 142, 366, 382
deployment of 157, 158, 161–163
 and network neutrality, 220, 221
standardization of, 153, 154
Quicken, 332
Rate of change
 of applications, 144–147, 155–157, 351–353
 of hidden modules, 136, 137
 of Internet-layer protocols, 151–154, 157–163, 383
 of link-layer protocols, 149–151
 of transport-layer protocols, 151–157
 of visible modules, 135, 136
Rate regulation in primary market exception, 226
Rational-choice theory, 33, 264, 374
Real options
 and broad version, 144–146
decision to acquire, 124, 125, 133, 136, 137
in integrated architectures, 123–127
and Internet layer, 151–154, 157
in modular architectures, 123–137
price of, 124
and relaxed layering with portability layer, 150, 151
and transport layer, 151–157
underlying concepts of, 122–124
Reciprocal interdependence, 167, 168, 176, 177–179. See also Coordination cost
Reed, David, 5, 58, 68, 69, 99, 110–112
Regulation, 2–4, 387, 388, 391, 392.
See also Network neutrality
Reimbursement processing, 53–57
Relationships among actors
and ability to innovate, 212, 213, 319, 322, 329
and functioning of constraints, 31
and governance, 178, 179
venture capitalists and, 329
Relaxed layering, 47, 88–90, 148–163, 203, 379. See also Internet layer
Reliability of networks, 72
Requirements specification, 20
Researcher-reimbursement layer, 53–57
Reverse engineering, 197
Risk taking
in architectures based on and
deviating from broad version, 147, 148, 294, 295, 352
and innovator diversity, 326–331, 340
in modular and integrated architectures, 127
Roberts, Lawrence, 302
Rocketmail, 320, 328
Routers, 50, 51, 85, 86
Ruby, 144, 337, 341
Ruby on Rails, 335, 337, 341, 345
Saltzer, Jerome, 5, 58, 110–112
Sandvine, 261
Schachter, Joshua, 205
Schmidt, Eric, 332
Schoch, John, 99
Scholes, Myron, 123
Schumpeterian competition, 249–251
Search engines
advertising and, 232, 235–238, 253, 314–318
business model of, 314–318, 321, 322
early history of, 304, 207, 321, 322
monetization gap and, 237, 238, 253
network effects in, 237, 238, 253
uncertainty surrounding, 304, 314–318
Security, 1, 2, 22, 23, 74, 287, 366–368.
See also Encryption; Firewalls
Sendmail, 345
Sequential interdependence, 176, 177.
See also Coordination cost
Sequoia Capital, 316, 332
Server-based applications, 143, 144, 207, 336. See also Web-based applications
Servers, 50. See also Web servers
Service interface, 52–55
Session Initiation Protocol (SIP), 315
Settlement charges, 241, 242
Short-term bias, 78, 374, 375
Silicon Graphics, 308
Simple Mail Transfer Protocol (SMTP), 88
Skype
cost of operating, 143, 315
discrimination against (see Internet telephony)
early history and funding of, 216, 306, 307, 314, 315, 328, 334
and NAT traversal, 315, 386
and quality of service, 142
rate of change of, 88, 146
Smith, Jack, 304, 306
Social networking, 359, 360
Social value
of application innovation, 356, 360
of consumptive uses, 360
of innovation in general, 356
of innovation in platform systems, 356, 357
of network architectures, 355–371, 387, 388
of productive uses, 360, 361
Software, development of, 20
Spillovers, 314, 342, 349, 356, 370
Standard-setting bodies, 185, 200
Stand-alone market. See Primary good not essential exception
Stanford Linear Accelerator, 303
Stanford University, 205, 212, 213, 310
Status quo bias, 264
Sticky information, 339
Stock market bias, 374, 375
Stock market crash, 209, 317
Strategic choices of system architects, 195–197, 200, 201. See also Strategic design; Competitive strategies
Strategic design
examples of, 200, 201, 371, 372, 389–392
theory underlying, 3, 32, 389
Streaming video, 70, 87, 88, 102
Stupid network, 107, 108, 366
Sunk cost, 245, 247
Sun Microsystems, 321, 332
Switching costs, 256, 259–264, 350
Systemic innovation. See also
Auto nomous innovation
in Internet architecture, 204–213, 386
in modular architectures, 185, 198–200
terminology of, 183
System integration, 183
System integrator, 196, 203, 204
System qualities. See also Complexity;
Correctness; Modifiability;
Performance; Security
and architecture, 21–23
and design principles, 23
Systems market. See Primary good not essential exception
Tacit information, 173, 174
TCP. See Transmission Control Protocol
TCP/IP protocol suite, 84–88. See also specific protocols
Telecommunications Workers Union, 267, 268
Telus, 267, 268
TENEX, 309
Thau, Robert, 338, 339
Thiel, Peter, 304
37signals, 207, 208, 334, 335, 341, 345
Thompson, James, 176
Thurmond, J. Strom, 361
Times Mirror, 207
Time Warner, 250, 251, 258
Tipping, 228. See also Network effects
Tomlinson, Ray, 302, 307, 309
Tradeoffs
in architecture design, 22, 23
by network providers, 372–375, 388
social, 368–371, 387, 388
and underlying design principles, 23
Transaction cost
and architecture, 190, 191
and coordination cost, 169–171
and governance, 186–190
and integrated architectures, 191, 192
and modular architectures, 192–195
theory of, 185–190
Transmission Control Protocol (TCP), 87
availability of interface specifications for, 202
error control in, 91–101
evolution of peer interfaces of, 155–157
evolution of service interfaces of, 151–154
and IP, 91, 94–102
operating end-to-end or hop-by-hop, 92, 93, 384
standardization of interface specifications for, 202
Transporting layer, 56, 57, 84, 85
Transport layer, 84–87. See also
Transmission Control Protocol; User Datagram Protocol
availability of interface specifications for protocols at, 202
cost of innovation at, 151–153
dependencies on, 88–90, 151, 155
deployment requirements for protocols at, 156, 385, 386
error control at (see Error control, at transport layer)
evolution of, 151–157, 386
and Internet layer, 91, 94–102, 380
as lowest layer implementing application-specific functionality, 86, 87, 98, 380
new protocols at, 153, 386
protocols operating end-to-end or hop-by-hop, 91, 92, 384
rate of change of protocols at, 151–157
Transport price. See Application-specific transport prices
Twitter, 345
Two-sided markets, 278–280
Types of innovators. See Innovator diversity; Innovators

UDP. See User Datagram Protocol
Uncertainty. See also Financial options; Real options
and bounded rationality, 187, 300
business, 124, 125
and complexity, 124
and coordination cost, 177, 178, 347, 348
in current Internet, 356
and established firms, 326–330
in Internet history, 300–311
and intertemporal bias, 78, 374
and likelihood of innovation on a module, 135–137
market, 124, 125
modeling, 130
resolution of, 124, 125, 147, 148, 347, 348
risk taking with respect to (see Risk taking)
and simultaneous entry into two markets, 245, 248

technical, 124
and transaction cost, 186–188, 347, 348
and user choice among new applications, 152–155, 294, 295, 351, 370, 371
and user-driven innovation, 340
value of experimentation under, 118, 128, 145, 146, 298–301, 314, 315
value of innovator diversity under, 212, 298–311, 314, 315, 326–331, 340, 349, 351
value of innovator independence under, 198, 345–348
and venture capital, 329–331
Universal Serial Bus (USB) standard, 43
University of Illinois, 307–309, 338
Usage-based pricing, 243. See also Pricing of Internet services
User choice. See also Control over end hosts
and network use, 72, 293, 294, 362–365, 371
among new applications, 72, 293–295, 349–351, 365, 366, 370, 371, 382, 387
User control. See User choice
User Datagram Protocol (UDP), 87, 98
availability of interface specifications for, 202
evolution of, 151–157
history of, 98, 99
User heterogeneity. See also Niche markets
in current Internet, 355, 356
and value of innovator diversity, 300, 318, 319, 340, 349–352
and value of user-driven innovation, 340

Venture capital
availability of, 31, 313
corporate, 333, 334
inability of innovators to get, 207–210, 312
Venture capital (cont.)

innovators backed by (see Innovators)
investment model underlying, 208, 329, 349
value of, 328–334
Verizon, 372
Verizon Wireless, 267, 269
Vertical boundary choices of firms, 168–171. See also Coordination cost; Transaction cost
Vertical leveraging. See Discrimination
Video conferencing, 70, 97
Video over Internet, 312, 327. See also Streaming video
Virtual circuit, 97–102
Virtual private network, 276, 277
Visible information. See also Interdependencies; Systemic innovation; Visible module
cost of innovation on, 121, 131–136
deployment context as constraint on evolution of, 152–163
in layered architectures, 46–48
in modular architectures, 38–44
of protocols, 52, 53
terminology of, 38
Visible module. See also Backward compatibility
Internet Protocol as, 151–154
likelihood of innovation on, 135, 136
terminology of, 133
transport-layer protocols as, 151–154
Voice over Internet Protocol (VoIP). See Internet telephony
Voices for Change, 267, 268
Vonage, 240–243, 315, 328

Web-based applications
and broad version, 108–110, 384, 385
costs of developing and operating, 143, 144, 336
financing of, 207
rate of change of, 146, 147, 155–157

Web-based e-mail, 304, 306, 320
Web cache, 383
Weblogs. See Blogs
Web servers, 70, 88, 338
costs of developing and operating, 143, 144
early history of, 321, 338–341
open-source software stack for, 143, 144
Welfare. See Social value
Wi-Fi technology, 83, 84, 148–151
Wikipedia, 360, 361
Williams, Evan, 207, 209, 347, 348
World Wide Web. See Application programming interfaces; Operating system
Windows. See Application programming interfaces
Windows 95, 321
Windows NT, 321
World Wide Web, 70, 87, 88, 338
as distributed application with application-level intermediaries, 92, 383
social value of, 360
World Wide Web Consortium, 88, 202
X.25 protocol suite, 91, 105
Yahoo
and advertising, 236, 239
early history and funding of, 205, 212, 213, 317, 318, 322, 328, 333
and search-engine advertising, 237, 238, 253, 317
Yan, Jerry, 205
Zittrain, Jonathan, 336, 366, 367
Zuckerberg, Mark, 206, 212, 213