
1 Introduction and Overview

How is it that a committee of blockheads can somehow arrive at highly reasoned decisions,
despite the weak judgment of the individual members? How can the shaky separate views
of a panel of dolts be combined into a single opinion that is very likely to be correct? That
this possibility of garnering wisdom from a council of fools can be harnessed and used to
advantage may seem far-fetched and implausible, especially in real life. Nevertheless, this
unlikely strategy turns out to form the basis of boosting, an approach to machine learning that
is the topic of this book. Indeed, at its core, boosting solves hard machine-learning problems
by forming a very smart committee of grossly incompetent but carefully selected members.

To see how this might work in the context of machine learning, consider the problem of
filtering out spam, or junk email. Spam is a modern-day nuisance, and one that is ideally
handled by highly accurate filters that can identify and remove spam from the flow of
legitimate email. Thus, to build a spam filter, the main problem is to create a method by
which a computer can automatically categorize email as spam (junk) or ham (legitimate).
The machine learning approach to this problem prescribes that we begin by gathering a
collection of examples of the two classes, that is, a collection of email messages which
have been labeled, presumably by a human, as spam or ham. The purpose of the machine
learning algorithm is to automatically produce from such data a prediction rule that can be
used to reliably classify new examples (email messages) as spam or ham.

For any of us who has ever been bombarded with spam, rules for identifying spam or
ham will immediately come to mind. For instance, if it contains the word Viagra, then it
is probably spam. Or, as another example, email from one’s spouse is quite likely to be
ham. Such individual rules of thumb are far from complete as a means of separating spam
from ham. A rule that classifies all email containing Viagra as spam, and all other email
as ham, will very often be wrong. On the other hand, such a rule is undoubtedly telling us
something useful and nontrivial, and its accuracy, however poor, will nonetheless be signi-
ficantly better than simply guessing entirely at random as to whether each email is spam
or ham.

Intuitively, finding these weak rules of thumb should be relatively easy—so easy, in
fact, that one might reasonably envision a kind of automatic “weak learning” program that,



2 1 Introduction and Overview

given any set of email examples, could effectively search for a simple prediction rule that
may be rough and rather inaccurate, but that nonetheless provides some nontrivial guidance
in separating the given examples as spam or ham. Furthermore, by calling such a weak
learning program repeatedly on various subsets of our dataset, it would be possible to extract
a collection of rules of thumb. The main idea of boosting is to somehow combine these
weak and inaccurate rules of thumb into a single “committee” whose overall predictions
will be quite accurate.

In order to use these rules of thumb to maximum advantage, there are two critical problems
that we face: First, how should we choose the collections of email examples presented to
the weak learning program so as to extract rules of thumb that will be the most useful?
And second, once we have collected many rules of thumb, how can they be combined into
a single, highly accurate prediction rule? For the latter question, a reasonable approach is
simply for the combined rule to take a vote of the predictions of the rules of thumb. For the
first question, we will advocate an approach in which the weak learning program is forced
to focus its attention on the “hardest” examples, that is, the ones for which the previously
chosen rules of thumb were most apt to give incorrect predictions.

Boosting refers to a general and provably effective method of producing a very accurate
prediction rule by combining rough and moderately inaccurate rules of thumb in a manner
similar to that suggested above. This book presents in detail much of the recent work
on boosting, focusing especially on the AdaBoost algorithm, which has undergone intense
theoretical study and empirical testing. In this first chapter, we introduceAdaBoost and some
of the key concepts required for its study. We also give a brief overview of the entire book.

See the appendix for a description of the notation used here and throughout the book, as
well as some brief, mathematical background.

1.1 Classification Problems and Machine Learning

This book focuses primarily on classification problems in which the goal is to categorize
objects into one of a relatively small set of classes. For instance, an optical character re-
cognition (OCR) system must classify images of letters into the categories A, B, C, etc. Medi-
cal diagnosis is another example of a classification problem in which the goal is to diagnose a
patient. In other words, given the symptoms manifested by the patient, our goal is to catego-
rize him or her as a sufferer or non-sufferer of a particular disease. The spam-filtering exam-
ple is also a classification problem in which we attempt to categorize emails as spam or ham.

We focus especially on a machine-learning approach to classification problems. Machine
learning studies the design of automatic methods for making predictions about the future
based on past experiences. In the context of classification problems, machine-learning
methods attempt to learn to predict the correct classifications of unseen examples through
the careful examination of examples which were previously labeled with their correct
classifications, usually by a human.
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We refer to the objects to be classified as instances. Thus, an instance is a description
of some kind which is used to derive a predicted classification. In the OCR example, the
instances are the images of letters. In the medical-diagnosis example, the instances are
descriptions of a patient’s symptoms. The space of all possible instances is called the in-
stance space or domain, and is denoted by X . A (labeled) example is an instance together
with an associated label indicating its correct classification. Instances are also sometimes
referred to as (unlabeled) examples.

During training, a learning algorithm receives as input a training set of labeled examples
called the training examples. The output of the learning algorithm is a prediction rule called
a classifier or hypothesis. A classifier can itself be thought of as a computer program which
takes as input a new unlabeled instance and outputs a predicted classification; so, in math-
ematical terms, a classifier is a function that maps instances to labels. In this book, we use
the terms classifier and hypothesis fairly interchangeably, with the former emphasizing a
prediction rule’s use in classifying new examples, and the latter emphasizing the fact that
the rule has been (or could be) generated as the result of some learning process. Other
terms that have been used in the literature include rule, prediction rule, classification rule,
predictor, and model.

To assess the quality of a given classifier, we measure its error rate, that is, the frequency
with which it makes incorrect classifications. To do this, we need a test set, a separate set of
test examples. The classifier is evaluated on each of the test instances, and its predictions are
compared against the correct classifications of the test examples. The fraction of examples on
which incorrect classifications were made is called the test error of the classifier. Similarly,
the fraction of mistakes on the training set is called the training error. The fraction of correct
predictions is called the (test or training) accuracy.

Of course, the classifier’s performance on the training set is not of much interest since our
purpose is to build a classifier that works well on unseen data. On the other hand, if there is
no relationship at all between the training set and the test set, then the learning problem is
unsolvable; the future can be predicted only if it resembles the past. Therefore, in designing
and studying learning algorithms, we generally assume that the training and test examples
are taken from the same random source. That is, we assume that the examples are chosen
randomly from some fixed but unknown distribution D over the space of labeled examples
and, moreover, that the training and test examples are generated by the same distribution.
The generalization error of a classifier measures the probability of misclassifying a random
example from this distribution D; equivalently, the generalization error is the expected test
error of the classifier on any test set generated by D. The goal of learning can now be stated
succinctly as producing a classifier with low generalization error.

To illustrate these concepts, consider the problem of diagnosing a patient with coronary
artery disease. For this problem, an instance consists of a description of the patient including
items such as sex, age, cholesterol level, chest pain type (if any), blood pressure, and results
of various medical tests. The label or class associated with each instance is a diagnosis
provided by a doctor as to whether or not the patient described actually suffers from the
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disease. During training, a learning algorithm is provided with a set of labeled examples
and attempts to produce a classifier for predicting if new patients suffer from the disease.
The goal is to produce a classifier that is as accurate as possible. Later, in section 1.2.3, we
describe experiments using a publicly available dataset for this problem.

1.2 Boosting

We can now make some of the informal notions about boosting described above more
precise. Boosting assumes the availability of a base or weak learning algorithm which,
given labeled training examples, produces a base or weak classifier. The goal of boosting is
to improve the performance of the weak learning algorithm while treating it as a “black box”
which can be called repeatedly, like a subroutine, but whose innards cannot be observed
or manipulated. We wish to make only the most minimal assumptions about this learning
algorithm. Perhaps the least we can assume is that the weak classifiers are not entirely trivial
in the sense that their error rates are at least a little bit better than a classifier whose every
prediction is a random guess. Thus, like the rules of thumb in the spam-filtering example,
the weak classifiers can be rough and moderately inaccurate, but not entirely trivial and
uninformative. This assumption, that the base learner produces a weak hypothesis that is
at least slightly better than random guessing on the examples on which it was trained, is
called the weak learning assumption, and it is central to the study of boosting.

As with the words classifier and hypothesis, we use the terms base and weak roughly
interchangeably, with weak emphasizing mediocrity in performance and base connoting
use as a building block.

Like any learning algorithm, a boosting algorithm takes as input a set of training examples
(x1, y1), . . . , (xm, ym) where each xi is an instance from X , and each yi is the associated
label or class. For now, and indeed for most of this book, we assume the simplest case
in which there are only two classes, −1 and +1, although we do explore extensions to
multiclass problems in chapter 10.

A boosting algorithm’s only means of learning from the data is through calls to the base
learning algorithm. However, if the base learner is simply called repeatedly, always with
the same set of training data, we cannot expect anything interesting to happen; instead, we
expect the same, or nearly the same, base classifier to be produced over and over again, so
that little is gained over running the base learner just once. This shows that the boosting
algorithm, if it is to improve on the base learner, must in some way manipulate the data that
it feeds to it.

Indeed, the key idea behind boosting is to choose training sets for the base learner in
such a fashion as to force it to infer something new about the data each time it is called.
This can be accomplished by choosing training sets on which we can reasonably expect
the performance of the preceding base classifiers to be very poor—even poorer than their
regular weak performance. If this can be accomplished, then we can expect the base learner
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to output a new base classifier which is significantly different from its predecessors. This is
because, although we think of the base learner as a weak and mediocre learning algorithm,
we nevertheless expect it to output classifiers that make nontrivial predictions.

We are now ready to describe in detail the boosting algorithm AdaBoost, which incorpo-
rates these ideas, and whose pseudocode is shown as algorithm 1.1. AdaBoost proceeds in
rounds or iterative calls to the base learner. For choosing the training sets provided to the
base learner on each round, AdaBoost maintains a distribution over the training examples.
The distribution used on the t-th round is denoted Dt , and the weight it assigns to training
example i is denoted Dt(i). Intuitively, this weight is a measure of the importance of cor-
rectly classifying example i on the current round. Initially, all weights are set equally, but on
each round, the weights of incorrectly classified examples are increased so that, effectively,
hard examples get successively higher weight, forcing the base learner to focus its attention
on them.

Algorithm 1.1
The boosting algorithm AdaBoost

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Initialize: D1(i) = 1/m for i = 1, . . . , m.
For t = 1, . . . , T :

• Train weak learner using distribution Dt .

• Get weak hypothesis ht : X → {−1,+1}.
• Aim: select ht to minimalize the weighted error:

εt
.= Pri∼Dt [ht (xi) �= yi] .

• Choose αt = 1

2
ln

(
1− εt

εt

)
.

• Update, for i = 1, . . . , m:

Dt+1(i) = Dt(i)

Zt

×
{

e−αt if ht (xi) = yi

eαt if ht (xi) �= yi

= Dt(i) exp(−αtyiht (xi))

Zt

,

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis:

H(x) = sign

(
T∑

t=1

αtht (x)

)
.
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The base learner’s job is to find a base classifier ht : X → {−1,+1} appropriate for the
distribution Dt . Consistent with the earlier discussion, the quality of a base classifier is
measured by its error weighted by the distribution Dt :

εt
.= Pri∼Dt [ht (xi) �= yi] =

∑
i:ht (xi )�=yi

Dt (i).

Here, Pri∼Dt [·] denotes probability with respect to the random selection of an example (as
specified by its index i) according to distribution Dt . Thus, the weighted error εt is the
chance of ht misclassifying a random example if selected according to Dt . Equivalently, it
is the sum of the weights of the misclassified examples. Notice that the error is measured
with respect to the same distribution Dt on which the base classifier was trained.

The weak learner attempts to choose a weak hypothesis ht with low weighted error εt . In
this setting, however, we do not expect that this error will be especially small in an absolute
sense, but only in a more general and relative sense; in particular, we expect it to be only
a bit better than random, and typically far from zero. To emphasize this looseness in what
we require of the weak learner, we say that the weak learner’s aim is to minimalize the
weighted error, using this word to signify a vaguer and less stringent diminishment than
that connoted by minimize.

If a classifier makes each of its predictions entirely at random, choosing each predicted
label to be−1 or+1 with equal probability, then its probability of misclassifying any given
example will be exactly 1

2 . Therefore, the error of this classifier will always be 1
2 , regardless

of the data on which the error is measured. Thus, a weak hypothesis with weighted error
εt equal to 1

2 can be obtained trivially by formulating each prediction as a random guess.
The weak learning assumption then, for our present purposes, amounts to an assumption
that the error of each weak classifier is bounded away from 1

2 , so that each εt is at most
1
2 − γ for some small positive constant γ . In this way, each weak hypothesis is assumed to
be slightly better than random guessing by some small amount, as measured by its error.
(This assumption will be refined considerably in section 2.3.)

As for the weights Dt(i) that AdaBoost calculates on the training examples, in practice,
there are several ways in which these can be used by the base learner. In some cases, the
base learner can use these weights directly. In other cases, an unweighted training set is
generated for the base learner by selecting examples at random from the original training
set. The probability of selecting an example in this case is set to be proportional to the
weight of the example. These methods are discussed in more detail in section 3.4.

Returning to the spam-filtering example, the instances xi correspond to email messages,
and the labels yi give the correct classification as spam or ham. The base classifiers are the
rules of thumb provided by the weak learning program where the subcollections on which
it is run are chosen randomly according to the distribution Dt .

Once the base classifier ht has been received, AdaBoost chooses a parameter αt as in
algorithm 1.1. Intuitively, αt measures the importance that is assigned to ht . The precise
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choice of αt is unimportant for our present purposes; the rationale for this particular choice
will become apparent in chapter 3. For now, it is enough to observe that αt > 0 if εt < 1

2 ,
and that αt gets larger as εt gets smaller. Thus, the more accurate the base classifier ht , the
more importance we assign to it.

The distribution Dt is next updated using the rule shown in the algorithm. First, all of the
weights are multiplied either by e−αt <1 for examples correctly classified by ht , or by eαt >1
for incorrectly classified examples. Equivalently, since we are using labels and predictions
in {−1,+1}, this update can be expressed more succinctly as a scaling of each example i by
exp(−αtyiht (xi)). Next, the resulting set of values is renormalized by dividing through by
the factor Zt to ensure that the new distribution Dt+1 does indeed sum to 1. The effect of this
rule is to increase the weights of examples misclassified by ht , and to decrease the weights
of correctly classified examples. Thus, the weight tends to concentrate on “hard” examples.
Actually, to be more precise, AdaBoost chooses a new distribution Dt+1 on which the last
base classifier ht is sure to do extremely poorly: It can be shown by a simple computation
that the error of ht with respect to distribution Dt+1 is exactly 1

2 , that is, exactly the trivial
error rate achievable through simple random guessing (see exercise 1.1). In this way, as
discussed above, AdaBoost tries on each round to force the base learner to learn something
new about the data.

After many calls to the base learner, AdaBoost combines the many base classifiers into a
single combined or final classifier H . This is accomplished by a simple weighted vote of the
base classifiers. That is, given a new instance x, the combined classifier evaluates all of the
base classifiers, and predicts with the weighted majority of the base classifiers’ predicted
classifications. Here, the vote of the t-th base classifier ht is weighted by the previously
chosen parameter αt . The resulting formula for H ’s prediction is as shown in the algorithm.

1.2.1 A Toy Example

To illustrate how AdaBoost works, let us look at the tiny toy learning problem shown in
figure 1.1. Here, the instances are points in the plane which are labeled+ or−. In this case,
there are m = 10 training examples, as shown in the figure; five are positive and five are
negative.

Let us suppose that our base learner finds classifiers defined by vertical or horizontal
lines through the plane. For instance, such a base classifier defined by a vertical line might
classify all points to the right of the line as positive, and all points to the left as negative.
It can be checked that no base classifier of this form correctly classifies more than seven
of the ten training examples, meaning that none has an unweighted training error below
30%. On each round t , we suppose that the base learner always finds the base hypothesis
of this form that has minimum weighted error with respect to the distribution Dt (breaking
ties arbitrarily). We will see in this example how, using such a base learner for finding such
weak base classifiers, AdaBoost is able to construct a combined classifier that correctly
classifies all of the training examples in only T = 3 boosting rounds.
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Figure 1.1
An illustration of how AdaBoost behaves on a tiny toy problem with m = 10 examples. Each row depicts one
round, for t = 1, 2, 3. The left box in each row represents the distribution Dt , with the size of each example scaled
in proportion to its weight under that distribution. Each box on the right shows the weak hypothesis ht , where
darker shading indicates the region of the domain predicted to be positive. Examples that are misclassified by ht

have been circled.
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Table 1.1
The numerical calculations corresponding to the toy example in figure 1.1

1 2 3 4 5 6 7 8 9 10

D1(i) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 ε1 = 0.30, α1 ≈ 0.42
e−α1yih1(xi ) 1.53 1.53 1.53 0.65 0.65 0.65 0.65 0.65 0.65 0.65
D1(i) e−α1yih1(xi ) 0.15 0.15 0.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07 Z1 ≈ 0.92

D2(i) 0.17 0.17 0.17 0.07 0.07 0.07 0.07 0.07 0.07 0.07 ε2 ≈ 0.21, α2 ≈ 0.65
e−α2yih2(xi ) 0.52 0.52 0.52 0.52 0.52 1.91 1.91 0.52 1.91 0.52
D2(i) e−α2yih2(xi ) 0.09 0.09 0.09 0.04 0.04 0.14 0.14 0.04 0.14 0.04 Z2 ≈ 0.82

D3(i) 0.11 0.11 0.11 0.05 0.05 0.17 0.17 0.05 0.17 0.05 ε3 ≈ 0.14, α3 ≈ 0.92
e−α3yih3(xi ) 0.40 0.40 0.40 2.52 2.52 0.40 0.40 2.52 0.40 0.40
D3(i) e−α3yih3(xi ) 0.04 0.04 0.04 0.11 0.11 0.07 0.07 0.11 0.07 0.02 Z3 ≈ 0.69

Calculations are shown for the ten examples as numbered in the figure. Examples on which hypothesis ht makes
a mistake are indicated by underlined figures in the rows marked Dt .

On round 1, AdaBoost assigns equal weight to all of the examples, as is indicated in
the figure by drawing all examples in the box marked D1 to be of the same size. Given
examples with these weights, the base learner chooses the base hypothesis indicated by h1

in the figure, which classifies points as positive if and only if they lie to the left of this
line. This hypothesis incorrectly classifies three points—namely, the three circled positive
points—so its error ε1 is 0.30. Plugging into the formula of algorithm 1.1 gives α1 ≈ 0.42.

In constructing D2, the weights of the three points misclassified by h1 are increased while
the weights of all other points are decreased. This is indicated by the sizes of the points in
the box marked D2. See also table 1.1, which shows the numerical calculations involved
in running AdaBoost on this toy example.

On round 2, the base learner chooses the line marked h2. This base classifier correctly
classifies the three relatively high-weight points missed by h1, though at the expense of
missing three other comparatively low-weight points which were correctly classified by h1.
Under distribution D2, these three points have weight only around 0.07, so the error of h2

with respect to D2 is ε2 ≈ 0.21, giving α2 ≈ 0.65. In constructing D3, the weights of these
three misclassified points are increased while the weights of the other points are decreased.

On round 3, classifier h3 is chosen. This classifier misses none of the points misclassified
by h1 and h2 since these points have relatively high weight under D3. Instead, it misclassifies
three points which, because they were not misclassified by h1 or h2, are of very low weight
under D3. On round 3, ε3 ≈ 0.14 and α3 ≈ 0.92.

Note that our earlier remark that the error of each hypothesis ht is exactly 1
2 on the new

distribution Dt+1 can be verified numerically in this case from table 1.1 (modulo small
discrepancies due to rounding).

The combined classifier H is a weighted vote of h1, h2, and h3 as shown in figure 1.2,
where the weights on the respective classifiers are α1, α2, and α3. Although each of the
composite weak classifiers misclassifies three of the ten examples, the combined classifier,
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H = sign

=

0.42 + 0.65 + 0.92

Figure 1.2
The combined classifier for the toy example of figure 1.1 is computed as the sign of the weighted sum of the
three weak hypotheses, α1h1+α2h2+α3h3, as shown at the top. This is equivalent to the classifier shown at
the bottom. (As in figure 1.1, the regions that a classifier predicts positive are indicated using darker shading.)

as shown in the figure, correctly classifies all of the training examples. For instance, the
classification of the negative example in the upper right corner (instance #4), which is
classified negative by h1 and h2 but positive by h3, is

sign(−α1−α2+α3) = sign(−0.15) = −1.

One might reasonably ask if such a rapid reduction in training error is typical for Ada-
Boost. The answer turns out to be yes in the following sense: Given the weak learning
assumption (that is, that the error of each weak classifier εt is at most 1

2 − γ for some
γ > 0), we can prove that the training error of the combined classifier drops exponentially
fast as a function of the number of weak classifiers combined. Although this fact, which is
proved in chapter 3, says nothing directly about generalization error, it does suggest that
boosting, which is so effective at driving down the training error, may also be effective
at producing a combined classifier with low generalization error. And indeed, in chapter 4
and 5, we prove various theorems about the generalization error of AdaBoost’s combined
classifier.

Note also that although we depend on the weak learning assumption to prove these results,
AdaBoost does not need to know the “edge” γ referred to above, but rather adjusts and adapts
to errors εt which may vary considerably, reflecting the varying levels of performance among
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the base classifiers. It is in this sense that AdaBoost is an adaptive boosting algorithm—
which is exactly what the name stands for.1 Moreover, this adaptiveness is one of the key
qualities that make AdaBoost practical.

1.2.2 Experimental Performance

Experimentally, on data arising from many real-world applications, AdaBoost also turns out
to be highly effective. To get a sense of AdaBoost’s performance overall, we can compare it
with other methods on a broad variety of publicly available benchmark datasets, an important
methodology in machine learning since different algorithms can exhibit relative strengths
that vary substantially from one dataset to the next. Here, we consider two base learning
algorithms: one that produces quite weak and simple base classifiers called decision stumps;
and the other, called C4.5, that is an established and already highly effective program for
learning decision trees, which are generally more complex but also quite a bit more accurate
than decision stumps. Both of these base classifiers are described further in sections 1.2.3
and 1.3.

Boosting algorithms work by improving the accuracy of the base learning algorithm.
Figure 1.3 shows this effect on 27 benchmark datasets. In each scatterplot, each point shows
the test error rate of boosting (x-coordinate) versus that of the base learner (y-coordinate)
on a single benchmark. All error rates have been averaged over multiple runs and multiple
random splits of the given data into training and testing sets. In these experiments, boosting
was run for T = 100 rounds.

To “read” such a scatterplot, note that a point lands above the line y = x if and only
if boosting shows improvement over the base learner. Thus, we see that when using the
relatively strong base learner C4.5, an algorithm that is very effective in its own right, Ada-
Boost is often able to provide quite a significant boost in performance. Even more dramatic
is the improvement effected when using the rather weak decision stumps as base classifiers.
In fact, this improvement is so substantial that boosting stumps is often even better than
C4.5, as can be seen in figure 1.4. On the other hand, overall, boosting C4.5 seems to give
more accurate results than boosting stumps.

In short, empirically, AdaBoost appears to be highly effective as a learning tool for
generalizing beyond the training set. How can we explain this capacity to extrapolate beyond
the observed training data? Attempting to answer this question is a primary objective of
this book.

1.2.3 A Medical-Diagnosis Example

As a more detailed example, let us return to the heart-disease dataset described briefly in sec-
tion 1.1. To apply boosting on this dataset, we first need to choose the base learner and base

1. This is also why AdaBoost, which is short for “adaptive boosting,” is pronounced ADD-uh-boost, similar to
adaptation.
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Figure 1.3
Comparison of two base learning algorithms—decision stumps and C4.5—with and without boosting. Each point
in each scatterplot shows the test error rate of the two competing algorithms on one of 27 benchmark learning
problems. The x-coordinate of each point gives the test error rate (in percent) using boosting, and the y-coordinate
gives the error rate without boosting when using decision stumps (left plot) or C4.5 (right plot). All error rates
have been averaged over multiple runs.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

C
4.

5

Boosting stumps

0

5

10

15

20

25

30

0 5 10 15 20 25 30

B
oo

st
in

g 
C

4.
5

Boosting stumps

Figure 1.4
Comparison of boosting using decision stumps as the base learner versus unboosted C4.5 (left plot) and boosted
C4.5 (right plot).
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classifiers. Here we have many options, but perhaps the simplest rules of thumb are those
which test on a single attribute describing the patient. For instance, such a rule might state:

If the patient’s cholesterol is at least 228.5, then predict that the patient has heart disease;
otherwise, predict that the patient is healthy.

In the experiments we are about to describe, we used base classifiers of just this form,
which are the decision stumps alluded to in section 1.2.2. (In fact, the weak classifiers used
in the toy example of section 1.2.1 are also decision stumps.) It turns out, as will be seen in
section 3.4.2, that a base learner which does an exhaustive search for the best decision stump
can be implemented very efficiently (where, as before, “best” means the one having lowest
weighted training error with respect to a given distribution Dt over training examples).
Table 1.2 shows the first six base classifiers produced by this base learner when AdaBoost
is applied to this entire dataset.

To measure performance on such a small dataset, we can divide the data randomly into
disjoint training and test sets. Because the test set for such a split is very small, we repeat this
many times, using a standard technique called cross validation. We then take the averages
of the training and test errors for the various splits of the data. Figure 1.5 shows these ave-
rage error rates for this dataset as a function of the number of base classifiers combined.
Boosting steadily drives down the training error. The test error also drops quickly, reaching
a low point of 15.3% after only three rounds, a rather significant improvement over using
just one of the base classifiers, the best of which has a test error of 28.0%. However, after
reaching this low point, the test error begins to increase again, so that after 100 rounds, the
test error is up to 18.8%, and after 1000 rounds, up to 22.0%.

This deterioration in performance with continued training is an example of an important
and ubiquitous phenomenon called overfitting. As the number of base classifiers becomes
larger and larger, the combined classifier becomes more and more complex, leading some-
how to a deterioration of test-error performance. Overfitting, which has been observed in
many machine-learning settings and which has also received considerable theoretical study,
is consistent with the intuition that a simpler explanation of the data is better than a more

Table 1.2
The first six base classifiers found when using AdaBoost on the heart-disease dataset

Round If Then Predict Else Predict

1 thalamus normal healthy sick

2 number of major vessels colored by fluoroscopy > 0 sick healthy

3 chest pain type is asymptomatic sick healthy

4 ST depression induced by exercise relative to rest ≥ 0.75 sick healthy

5 cholesterol ≥ 228.5 sick healthy

6 resting electrocardiographic results are normal healthy sick
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Figure 1.5
The training and test percent error rates obtained using boosting on the heart-disease dataset. Results are averaged
over multiple train-test splits of the data.

complicated one, a notion sometimes called “Occam’s razor.” With more rounds of boost-
ing, the combined classifier grows in size and complexity, apparently overwhelming good
performance on the training set. This general connection between simplicity and accuracy
is explored in chapter 2. For boosting, exactly the kind of behavior observed in figure 1.5
is predicted by the analysis in chapter 4.

Overfitting is a significant problem because it means that we have to be very careful about
when to stop boosting. If we stop too soon or too late, our performance on the test set may
suffer significantly, as can be seen in this example. Moreover, performance on the training
set provides little guidance about when to stop training since the training error typically
continues to drop even as overfitting gets worse and worse.

1.3 Resistance to Overfitting and the Margins Theory

This last example describes a case in which boosting was used with very weak base clas-
sifiers. This is one possible use of boosting, namely, in conjunction with a very simple
but truly mediocre weak learning algorithm. A rather different use of boosting is instead to
boost the accuracy of a learning algorithm that is already quite good.

This is the approach taken in the next example. Here, rather than a very weak base learner,
we used the well-known and highly developed machine-learning algorithm C4.5 as the base
learner. As mentioned earlier, C4.5 produces classifiers called decision trees. Figure 1.6
shows an example of a decision tree. The nodes are identified with tests having a small
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Figure 1.6
An example of a decision tree.

number of outcomes corresponding to the outgoing edges of the node. The leaves are iden-
tified with predicted labels. To classify an example, a path is traversed through the tree from
the root to a leaf. The path is determined by the outcomes of the tests that are encountered
along the way, and the predicted classification is determined by the leaf that is ultimately
reached. For instance, in the figure, a large, square, blue item would be classified −
while a medium, round, red item would be classified +.

We tested boosting using C4.5 as the base learner on a benchmark dataset in which the
goal is to identify images of handwritten characters as letters of the alphabet. The features
used are derived from the raw pixel images, including such items as the average of the
x-coordinates of the pixels that are turned on. The dataset consists of 16,000 training
examples and 4000 test examples.

Figure 1.7 shows training and test error rates for AdaBoost’s combined classifier on this
dataset as a function of the number of decision trees (base classifiers) combined. A single
decision tree produced by C4.5 on this dataset has a test error rate of 13.8%. In this example,
boosting very quickly drives down the training error; in fact, after only five rounds the
training error is zero, so that all training examples are correctly classified. Note that there
is no reason why boosting cannot proceed beyond this point. Although the training error of
the combined classifier is zero, the individual base classifiers continue to incur significant
weighted error—around 5–6%—on the distributions on which they are trained, so that
εt remains in this range, even for large t . This permits AdaBoost to proceed with the
reweighting of training examples and the continued training of base classifiers.

The test performance of boosting on this dataset is extremely good, far better than a sin-
gle decision tree. And surprisingly, unlike the earlier example, the test error on this dataset
never increases, even after 1000 trees have been combined—by which point, the combined
classifier involves more than two million decision nodes. Even after the training error hits
zero, the test error continues to drop, from 8.4% on round 5 down to 3.1% on round 1000.
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Figure 1.7
The training and test percent error rates obtained using boosting on an OCR dataset with C4.5 as the base learner.
The top and bottom curves are test and training error, respectively. The top horizontal line shows the test error rate
using just C4.5. The bottom line shows the final test error rate of AdaBoost after 1000 rounds. (Reprinted with
permission of the Institute of Mathematical Statistics.)

This pronounced lack of overfitting seems to flatly contradict our earlier intuition that sim-
pler is better. Surely, a combination of five trees is much, much simpler than a combination
of 1000 trees (about 200 times simpler, in terms of raw size), and both perform equally
well on the training set (perfectly, in fact). So how can it be that the far larger and more
complex combined classifier performs so much better on the test set? This would appear to
be a paradox.

One superficially plausible explanation is that the αt ’s are converging rapidly to zero,
so that the number of base classifiers being combined is effectively bounded. However, as
noted above, the εt ’s remain around 5–6% in this case, well below 1

2 , which means that the
weights αt on the individual base classifiers are also bounded well above zero, so that the
combined classifier is constantly growing and evolving with each round of boosting.

Such resistance to overfitting is typical of boosting, although, as we have seen in sec-
tion 1.2.3, boosting certainly can overfit. This resistance is one of the properties that make
it such an attractive learning algorithm. But how can we understand this behavior?

In chapter 5, we present a theoretical explanation of how, why, and whenAdaBoost works
and, in particular, of why it often does not overfit. Briefly, the main idea is the following.
The description above of AdaBoost’s performance on the training set took into account
only the training error, which is already zero after just five rounds. However, training error
tells only part of the story, in that it reports just the number of examples that are correctly
or incorrectly classified. Instead, to understand AdaBoost, we also need to consider how
confident the predictions being made by the algorithm are. We will see that such confidence
can be measured by a quantity called the margin. According to this explanation, although
the training error—that is, whether or not the predictions are correct—is not changing
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after round 5, the confidence in those predictions is increasing dramatically with additional
rounds of boosting. And it is this increase in confidence which accounts for the better
generalization performance.

This theory, for which we present both empirical and theoretical evidence, not only
explains the lack of overfitting but also provides a detailed framework for fundamentally
understanding the conditions under which AdaBoost can fail or succeed.

1.4 Foundations and Algorithms

The core analysis outlined above forms part I of this book, a largely mathematical study
of AdaBoost’s capacity to minimize both the training and the generalization error. Here,
our focus is on understanding how, why, and when AdaBoost is effective as a learning
algorithm.

This analysis, including the margins theory, is paramount in our study of boosting;
however, it is hardly the end of the story. Indeed, although it is an enticingly simple
algorithm, AdaBoost turns out to be understandable from a striking number of disparate
theoretical perspectives. Taken together, these provide a remarkably rich and encompassing
illumination of the algorithm, in addition to practical generalizations and variations along
multiple dimensions. Part II of the book explores three of these fundamental perspectives.

In the first of these, the interaction between a boosting algorithm and a weak learning
algorithm is viewed as a game between these two players—a game not only in the informal,
everyday sense but also in the mathematical sense studied in the field of game theory. In
fact, it turns out that AdaBoost is a special case of a more general algorithm for playing any
game in a repeated fashion. This perspective, presented in chapter 6, helps us to understand
numerous properties of the algorithm, such as its limiting behavior, in broader, game-
theoretic terms. We will see that notions that are central to boosting, such as margins and
the weak learning assumption, have very natural game-theoretic interpretations. Indeed, the
very idea of boosting turns out to be intimately entwined with one of the most fundamental
theorems of game theory. This view also unifies AdaBoost with another branch of learning
known as online learning.

AdaBoost can be further understood as an algorithm for optimizing a particular objective
function measuring the fit of a model to the available data. In this way, AdaBoost can be seen
as an instance of a more general approach that can be applied to a broader range of statistical
learning problems, as we describe in chapter 7. This view further leads to a unification
of AdaBoost with the more established statistical method called logistic regression, and
suggests how AdaBoost’s predictions can be used to estimate the probability of a particular
example being positive or negative.

From yet another vantage point, which turns out to be “dual” to the one given in chap-
ter 7, AdaBoost can be interpreted in a kind of abstract, geometric framework. Here, the
fundamental operation is projection of a point onto a subspace. In this case, the “points” are
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in fact the distributions Dt computed by AdaBoost, which exist in a kind of “information
geometric” space—one based on notions from information theory—rather than the usual
Euclidean geometry. As discussed in chapter 8, this view leads to a deeper understand-
ing of AdaBoost’s dynamics and underlying mathematical structure, and yields proofs of
fundamental convergence properties.

Part III of this book focuses on practical, algorithmic extensions of AdaBoost. In the
basic form shown in algorithm 1.1, AdaBoost is intended for the simplest learning setting
in which the goal is binary classification, that is, classification problems with only two
possible classes or categories. To apply AdaBoost to a much broader range of real-world
learning problems, the algorithm must be extended along multiple dimensions.

In chapter 9, we describe an extension to AdaBoost in which the base classifiers them-
selves are permitted to output predictions that vary in their self-rated level of confidence. In
practical terms, this modification of boosting leads to a dramatic speedup in learning time.
Moreover, within this framework we derive two algorithms designed to produce classifiers
that are not only accurate, but also understandable in form to humans.

Chapter 10 extends AdaBoost to the case in which there are more than two possible
classes, as is very commonly the case in actual applications. For instance, if recognizing
digits, there are ten classes, one for each digit. As will be seen, it turns out that there are
quite a number of methods for modifying AdaBoost for this purpose, and we will see how
a great many of these can be studied in a unified framework.

Chapter 11 extends AdaBoost to ranking problems, that is, problems in which the goal
is to learn to rank a set of objects. For instance, the goal might be to rank credit card
transactions according to the likelihood of each one being fraudulent, so that those at the
top of the ranking can be investigated.

Finally, in part IV, we study a number of advanced theoretical topics.
The first of these provides an alternative approach for the understanding of AdaBoost’s

generalization capabilities, which explicitly takes into consideration intrinsic randomness or
“noise” in the data that may prevent perfect generalization by any classifier. In such a setting,
we show in chapter 12 that the accuracy ofAdaBoost will nevertheless converge to that of the
best possible classifier, under appropriate assumptions. However, we also show that without
these assumptions, AdaBoost’s performance can be rather poor when the data is noisy.

AdaBoost can be understood in many ways, but at its foundation, it is a boosting algorithm
in the original technical meaning of the word, a provable method for driving down the error
of the combined classifier by combining a number of weak classifiers. In fact, for this specific
problem, AdaBoost is not the best possible; rather, there is another algorithm called “boost-
by-majority” that is optimal in a very strong sense, as we will see in chapter 13. However,
this latter algorithm is not practical because it is not adaptive in the sense described in
section 1.2.1. Nevertheless, as we show in chapter 14, this algorithm can be made adaptive
by taking a kind of limit in which the discrete time steps in the usual boosting framework
are replaced by a continuous sequence of time steps. This leads to the “BrownBoost”
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algorithm, which has certain properties that suggest greater tolerance to noise, and from
which AdaBoost can be derived in the “zero-noise” limit.

Although this book is about foundations and algorithms, we also provide numerous
examples illustrating how the theory we develop can be applied practically. Indeed, as seen
earlier in this chapter, AdaBoost has many practical advantages. It is fast, simple, and easy
to program. It has no parameters to tune (except for the number of rounds T ). It requires no
prior knowledge about the base learner, and so can be flexibly combined with any method
for finding base classifiers. Finally, it comes with a set of theoretical guarantees, given
sufficient data and a base learner that can reliably provide only moderately accurate base
classifiers. This is a shift in mind-set for the learning-system designer: instead of trying to
design a learning algorithm that is accurate over the entire space, we can instead focus on
finding weak learning algorithms that only need to be better than random.

On the other hand, some caveats are certainly in order. The actual performance of boosting
on a particular problem is clearly dependent on the data and the base learner. Consistent
with the theory outlined above and discussed in detail in this book, boosting can fail to
perform well, given insufficient data, overly complex base classifiers, or base classifiers
that are too weak. Boosting seems to be especially susceptible to noise, as we discuss in
section 12.3. Nonetheless, as seen in section 1.2.2, on a wide range of real-world learning
problems, boosting’s performance overall is quite good.

To illustrate its empirical performance and application, throughout this book we give
examples of its use on practical problems such as human-face detection, topic identification,
language understanding in spoken-dialogue systems, and natural-language parsing.

Summary

In this chapter, we have given an introduction to machine learning, classification problems,
and boosting, particularly AdaBoost and its variants, which are the focus of this book.
We have presented examples of boosting’s empirical performance, as well as an overview
of some of the highlights of its rich and varied theory. In the chapters ahead, we explore
the foundations of boosting from many vantage points, and develop key principles in the
design of boosting algorithms, while also giving examples of their application to practical
problems.
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Exercises

1.1 Show that the error of ht on distribution Dt+1 is exactly 1
2 , that is,

Pri∼Dt+1 [ht (xi) �= yi] = 1
2 .

1.2 For each of the following cases, explain how AdaBoost, as given in algorithm 1.1, will
treat a weak hypothesis ht with weighted error εt . Also, in each case, explain how this
behavior makes sense.

a. εt = 1
2 .

b. εt > 1
2 .

c. εt = 0.

1.3 In figure 1.7, the training error and test error of the combined classifier H are seen
to increase significantly on the second round. Give a plausible explanation why we might
expect these error rates to be higher after two rounds than after only one.




