Contents

Series Foreword xi
Preface xiii

1 Introduction and Overview 1
1.1 Classification Problems and Machine Learning 2
1.2 Boosting 4
1.3 Resistance to Overfitting and the Margins Theory 14
1.4 Foundations and Algorithms 17
 Summary 19
 Bibliographic Notes 19
 Exercises 20

I CORE ANALYSIS 21

2 Foundations of Machine Learning 23
2.1 A Direct Approach to Machine Learning 24
2.2 General Methods of Analysis 30
2.3 A Foundation for the Study of Boosting Algorithms 43
 Summary 49
 Bibliographic Notes 49
 Exercises 50

3 Using AdaBoost to Minimize Training Error 53
3.1 A Bound on AdaBoost’s Training Error 54
3.2 A Sufficient Condition for Weak Learnability 56
3.3 Relation to Chernoff Bounds 60
3.4 Using and Designing Base Learning Algorithms 62
 Summary 70
 Bibliographic Notes 71
 Exercises 71
4 Direct Bounds on the Generalization Error

4.1 Using VC Theory to Bound the Generalization Error 75
4.2 Compression-Based Bounds 83
4.3 The Equivalence of Strong and Weak Learnability 86
Summary 88
Bibliographic Notes 89
Exercises 89

5 The Margins Explanation for Boosting’s Effectiveness

5.1 Margin as a Measure of Confidence 94
5.2 A Margins-Based Analysis of the Generalization Error 97
5.3 Analysis Based on Rademacher Complexity 106
5.4 The Effect of Boosting on Margin Distributions 111
5.5 Bias, Variance, and Stability 117
5.6 Relation to Support-Vector Machines 122
5.7 Practical Applications of Margins 128
Summary 132
Bibliographic Notes 132
Exercises 134

II FUNDAMENTAL PERSPECTIVES

6 Game Theory, Online Learning, and Boosting

6.1 Game Theory 142
6.2 Learning in Repeated Game Playing 145
6.3 Online Prediction 153
6.4 Boosting 157
6.5 Application to a “Mind-Reading” Game 163
Summary 169
Bibliographic Notes 169
Exercises 170

7 Loss Minimization and Generalizations of Boosting

7.1 AdaBoost’s Loss Function 177
7.2 Coordinate Descent 179
7.3 Loss Minimization Cannot Explain Generalization 184
7.4 Functional Gradient Descent 188
7.5 Logistic Regression and Conditional Probabilities 194
7.6 Regularization 202
7.7 Applications to Data-Limited Learning 211
Summary 219
Bibliographic Notes 219
Exercises 220
Contents

8 Boosting, Convex Optimization, and Information Geometry 227
- 8.1 Iterative Projection Algorithms 228
- 8.2 Proving the Convergence of AdaBoost 243
- 8.3 Unification with Logistic Regression 252
- 8.4 Application to Species Distribution Modeling 255

Summary 260

Bibliographic Notes 262

Exercises 263

III ALGORITHMIC EXTENSIONS 269

9 Using Confidence-Rated Weak Predictions 271
- 9.1 The Framework 273
- 9.2 General Methods for Algorithm Design 275
- 9.3 Learning Rule-Sets 287
- 9.4 Alternating Decision Trees 290

Summary 296

Bibliographic Notes 297

Exercises 297

10 Multiclass Classification Problems 303
- 10.1 A Direct Extension to the Multiclass Case 305
- 10.2 The One-against-All Reduction and Multi-label Classification 310
- 10.3 Application to Semantic Classification 316
- 10.4 General Reductions Using Output Codes 320

Summary 333

Bibliographic Notes 333

Exercises 334

11 Learning to Rank 341
- 11.1 A Formal Framework for Ranking Problems 342
- 11.2 A Boosting Algorithm for the Ranking Task 345
- 11.3 Methods for Improving Efficiency 351
- 11.4 Multiclass, Multi-label Classification 361
- 11.5 Applications 364

Summary 367

Bibliographic Notes 369

Exercises 369