THE NEW VISUAL NEUROSCIENCES
CONTENTS

Preface xv

1 A Decade of Progress and New Directions in the Visual Neurosciences 1
JOHN S. WERNER AND LEO M. CHALUPA

I RETINAL MECHANISMS AND PROCESSES

2 Visual Transduction by Rod and Cone Photoreceptors 7
MARIE E. BURNS AND EDWARD N. PUGH, JR.

3 Membrane Protein Transport in Mouse Photoreceptors: Trafficking of Visual Pigments and Transducin 19
WOLFGANG BAEHR, RYAN CONSTANTINE, HOUBIN ZHANG, AND JEANNE M. FREDERICK

4 Photoreceptor–RPE Interactions: Diurnal Phagocytosis 29
LINDA RUGGIERO AND SILVIA C. FINNEMANN

5 Information Transfer at the Rod-to-Rod Bipolar Cell Synapse 39
ALAPAKKAM P. SAMPATH

6 Cone Bipolar Cells: ON and OFF Pathways in the Outer Retina 53
STEVEN H. DEVRIES

7 Horizontal Cells: Lateral Interactions at the First Synapse in the Retina 63
RICHARD H. KRAMER

8 Stratification of the Inner Plexiform Layer in the Mammalian Retina 75
STEPHEN L. MILLS AND STEPHEN C. MASSEY
Contents

36 Color Appearance, Language, and Neural Coding 511
 DELWIN T. LINDSEY AND ANGELA M. BROWN

37 Adaptation in Color and Form Perception 533
 MICHAEL A. WEBSTER

38 Color Constancy 545
 DAVID H. BRAINARD AND ANA RADONJIČ

39 Recent Developments in Comparative Color Vision 557
 GERALD H. JACOBS

40 Color in the Primary Visual Cortex 569
 ROBERT SHAPLEY, MICHAEL HAWKEN, AND ELIZABETH JOHNSON

41 The Processing of Color in Primate Extrastriate Cortex 587
 DANIEL C. KIPER AND KARL R. GEGENFURTNER

VI PATTERN, SURFACE, AND SHAPE

42 Spatial Scale in Visual Processing 595
 ROBERT F. HESS

43 Configural Pooling in the Ventral Pathway 617
 HUGH R. WILSON AND FRANCES WILKINSON

44 Contour Integration and the Association Field 627
 DAVID J. FIELD, JAMES R. GOLDEN, AND ANTHONY HAYES

45 Texture Analysis and Perception 639
 MICHAEL S. LANDY

46 The Perceptual Organization of Depth, Lightness, Color, and Opacity 653
 BARTON L. ANDERSON

47 Image-Parsing Mechanisms of the Visual Cortex 665
 RÜDIGER VON DER HEYDT

VII OBJECTS AND SCENES

48 Visual Crowding 681
 DENNIS M. LEVI

49 From Textures to Crowds: Multiple Levels of Summary Statistical Perception 695
 DAVID WHITNEY, JASON HABERMAN, AND TIMOTHY D. SWEENEY
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Face Perception</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>Gillian Rhodes and Andrew J. Calder</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Scene Perception</td>
<td>725</td>
</tr>
<tr>
<td></td>
<td>Aude Oliva</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>The Functional Organization of the Ventral Visual Pathway in Humans</td>
<td>733</td>
</tr>
<tr>
<td></td>
<td>Nancy Kanwisher and Daniel D. Dilks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIII TIME, MOTION, AND DEPTH</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Visual Time Perception</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>Alan Johnston</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Motion Perception: Human Psychophysics</td>
<td>763</td>
</tr>
<tr>
<td></td>
<td>David Burr</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Functional Mapping of Motion Regions in Human and Nonhuman Primates</td>
<td>777</td>
</tr>
<tr>
<td></td>
<td>Guy A. Orban and Jan Jastorff</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>The Cortical Analysis of Optic Flow: Mechanism, Function, and Dysfunction</td>
<td>793</td>
</tr>
<tr>
<td></td>
<td>Charles J. Duffy</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Stereopsis</td>
<td>809</td>
</tr>
<tr>
<td></td>
<td>Clifton M. Schor</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Binocular Rivalry Updated</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>Randolph Blake</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IX EYE MOVEMENTS</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Natural Eye Movements and Vision</td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>Michael B. McCamy, Stephen L. Macknik, and Susana Martinez-Conde</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Neural Mechanisms of Fixations and Saccades: The Eye Plant and Low-Level Control</td>
<td>865</td>
</tr>
<tr>
<td></td>
<td>Lance M. Optican, Pierre M. Daye, and Christian Quaia</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Neural Mechanisms of Eye Movements: Three-Dimensional Control and Perceptual Consequences</td>
<td>879</td>
</tr>
<tr>
<td></td>
<td>Eliana M. Klier, Gunnar Blohm, and J. Douglas Crawford</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Neural Mechanisms for Smooth Pursuit Eye Movements</td>
<td>893</td>
</tr>
<tr>
<td></td>
<td>Michael J. Mustari and Seiji Ono</td>
<td></td>
</tr>
</tbody>
</table>
CORTICAL MECHANISMS OF ATTENTION, COGNITION, AND MULTIMODAL INTEGRATION

69 Perceptual Learning 991
YUKA SASAKI AND TAKEO WATANABE

70 Perceptual Learning and Plasticity in Primary Visual Cortex 1001
WU LI AND CHARLES D. GILBERT

71 Selective Neuronal Synchronization and Attentional Stimulus Selection in Visual Cortex 1013
THILO WOMELSDORF, CONRADO BOSMAN, AND PASCAL FRIES

72 Visuomotor Control 1031
MELVYN A. GOODALE

73 The Evolution of Parietal Areas Associated with Visuomotor Behavior: From Grasping to Tool Use 1049
DYLAN F. COOKE, ADAM GOLDRING, GREGG H. RECONZONE, AND LEAH KRUBITZER

74 Auditory–Visual Interactions 1065
CHARLES SPENCE

75 Neuroimaging Studies on Human Attention Networks in Visual and Frontoparietal Cortex 1079
GEOFFREY M. BOYNTON AND SABINE KASTNER

76 Attentional “Spotlight” in Early Visual Cortex 1097
DAVID C. SOMERS
77 Feature-Based Attention in Primates: Mechanisms and Theoretical Considerations 1107
Julio C. Martinez-Trujillo and Paul S. Khayat

78 Parietal Mechanisms of Attentional Guidance: The Role of Learning and Cognition 1121
Jacqueline Gottlieb

XI INVERTEBRATE VISION

79 Invertebrate Vision: Optics and Behavior 1141
Michael F. Land

80 Visual Navigation Strategies in Insects: Lessons from Desert Ants 1153
Rüdiger Wehner, Ken Cheng, and Holk Cruse

81 Vision and Body Coloration in Marine Invertebrates 1165
Justin Marshall and Karen L. Cheney

82 The Cognitive Structure of Visual Navigation in Honeybees 1179
Randolf Menzel

83 Neurobiology of Movement-Sensitive Behavior in Flies 1191
Alexander Borst

84 Polarization Vision in Arthropods 1207
Uwe Homberg and Basil el Jundi

85 Vision and Navigation in Insects, and Applications to Aircraft Guidance 1219
Mandyam V. Srinivasan, Richard J. D. Moore, Saul Thurrowgood, Dean Soccol, Daniel Bland, and Michael Knight

XII THEORETICAL PERSPECTIVES

86 The Evolution of the Visual System in Primates 1233
Jon H. Kaas

87 What Natural Scene Statistics Can Tell Us about Cortical Representation 1247
Bruno A. Olshausen and Michael S. Lewicki

88 Vision: Bayesian Inference and Beyond 1263
Daniel Kersten and Alan Yuille

89 Neural Oscillations and Synchrony as Mechanisms for Coding, Communication, and Computation in the Visual System 1279
Friedrich T. Sommer
MOLECULAR AND DEVELOPMENTAL PROCESSES

90 Development of Retinal Arbors and Synapses 1291
JEREMY N. KAY AND JOSHUA R. SANES

91 The Role of DSCAMs in the Neural Development of the Retina and Visual System 1305
ABIGAIL L. D. TADENEV, ANDREW M. GARRETT, AND ROBERT W. BURGESS

92 The Development of Retinal Decussations 1317
CAROL MASON, TAKAAKI KUWAJIMA, AND QING WANG

93 Mechanisms of Axon Guidance and Adhesion Signaling in Thalamocortical Axon Targeting 1335
PATRICIA F. MANESS

94 Development of Direction Selectivity 1347
AARON M. HAMBY AND MARLA B. FELLER

95 Mechanisms of Visual Cortex Plasticity during Development 1359
IKUE NAGAKURA, NIKOLAOS MELLIOS, AND MRIGANKA SUR

96 Role of Glial Cells and Immune Molecules in Visual Development 1369
ALLISON R. BIALAS AND BETH STEVENS

97 Optic Nerve Regeneration 1387
LARRY I. BENOWITZ AND SILMARA DE LIMA

98 Conformity and Specificity of Primate Corticogenesis 1407
MARION BETIZEAU, COLETTE DEHAY, AND HENRY KENNEDY

99 Neural Limitations on Visual Development in Primates: Beyond Striate Cortex 1423
LYNNE KIORPES AND J. ANTHONY MOVSHON

100 The Molecular and Structural Basis of Amblyopia 1433
JASON E. COLEMAN, ARNOLD J. HEYNEN, AND MARK F. BEAR

TRANSLATIONAL VISUAL NEUROSCIENCE

101 Translational Research for Optic Nerve Disorders: Overview 1447
NEIL R. MILLER

102 Transcriptional Regulation of Photoreceptor Development 1467
VINOD RANGANATHAN AND DONALD J. ZACK

103 Retinopathy of Prematurity: A Template for Studying Retinal Vascular Disease 1483
MARY ELIZABETH HARTNETT
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Human Choriocapillaris Development</td>
<td>1503</td>
</tr>
<tr>
<td></td>
<td>D. Scott McLeod and Gerard A. Lutty</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Treatment of Neovascular Age-Related Macular Degeneration</td>
<td>1515</td>
</tr>
<tr>
<td></td>
<td>Rajendra S. Apte and Rithwick Rajagopal</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Bruch’s Membrane in Outer Retinal Health and Disease</td>
<td>1529</td>
</tr>
<tr>
<td></td>
<td>Christine A. Curcio</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Macular Pigment: Characteristics and Role in the Older Eye</td>
<td>1547</td>
</tr>
<tr>
<td></td>
<td>Ian J. Murray</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Molecular Mechanisms Underlying Non-Neovascular Age-Related Macular</td>
<td>1563</td>
</tr>
<tr>
<td></td>
<td>Degeneration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mark E. Kleinman and Jayakrishna Ambati</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Gene Therapy for Retinal Degeneration</td>
<td>1577</td>
</tr>
<tr>
<td></td>
<td>Curtis R. Brandt</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Retinal Cell Replacement</td>
<td>1593</td>
</tr>
<tr>
<td></td>
<td>Mandeep S. Singh and Robert E. MacLaren</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Stem Cell Therapies for Visual Disorders</td>
<td>1611</td>
</tr>
<tr>
<td></td>
<td>Peter D. Westenskow and Martin Friedlander</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Retinal Prostheses</td>
<td>1627</td>
</tr>
<tr>
<td></td>
<td>Mark S. Humayun, James D. Weiland, and Devyani Nanduri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contributors</td>
<td>1641</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>1647</td>
</tr>
</tbody>
</table>
This book covers the extraordinary range of contemporary visual neuroscience, from molecules and cell assemblies to systems and therapy. Nowhere in the neurosciences has progress been so rapid as in the vision sciences. A book of this scope, which is even broader than the original Visual Neurosciences assembled 10 years ago, requires expert advice in many specialties even though the final product is intended for nonspecialists. We have been fortunate in enlisting the help of associate editors, authorities in various areas of vision science, with whom we have enjoyed a smooth working relationship through a variety of common bonds with the University of California at Davis. They reviewed chapters and solicited expertise from a large number of reviewers. We are grateful to all these colleagues for helping to bring this book to completion.

We thank Susan Garcia and Rieko Ringo for administrative support and for laboring long hours beyond their normal work day. We are also grateful to Laura Leming, Cameron Blount, and Grace Dell’Olio. In addition, the editorial staff at the MIT Press were not only cordial task masters, but reliable, supportive, and professional, especially Robert Prior, Susan Buckley, and Katherine Almeida. They provided valuable guidance at all stages. Finally, we thank the authors for adhering to tight deadlines in order to produce a book that is both up to date and of archival value, a work that we hope will inspire readers who are only beginning their quest in the visual neurosciences and those established scientists who wish to broaden the scope of their interests in The New Visual Neurosciences.