Index

Note: Page numbers followed by f indicate figures; those followed by t indicate tables.

A
AAR (average abnormal return), 387, 389
Abandonment option, 653–659
with equipment sale, 655–656
state prices with, 654, 656–659
value enhancement with, 655
valuing as series of puts of, 659–661
valuing of project for, 654
Abnormal returns (AR), 371, 374
average, 387, 389
cumulative, 371, 374
examples of, 386–389, 393
examples of, 378–379, 393
Abs function (Excel), 326
Absolute value, of array of numbers, 326
Accelerated depreciation, 131–133,
163–167
Accounts payable (A/P), intangibles in, 136
Accrued interest, on bonds, 731–732
Activate method (VBA), 1021
ActiveCell object (VBA), 975–979
Add-in(s), 1008–1013
converting workbook to, 1008–1010
installing and using, 1011–1013
Add-ins function (Excel), 802–803
Addition, of matrices, 776
Address property, of ActiveCell object,
976–977
Alpha (α), of assets, 322
American call options, pricing of, 435
American options, 422
binomial option-pricing model for,
455–458
VBA function in, 460–463
Ampersand (&) operator (VBA), 932,
1060
AndDemo function (VBA), 902–903
Annual returns, 258–259
Annuity
present value of, 7–9
AnnuityValue function (Excel), 684–686
A/P (accounts payable), intangibles in, 136
Application.Combin function (Excel), in
VBA, 885
Application.NormSDist function (VBA),
in Black-Scholes model, 512
AR. See Abnormal returns (AR).
Areas property (VBA), 1024
Array(s) (VBA), 941–971
assignment of, 959–960
data tables as, 770
dynamic, 948–958
explicitly declared index boundaries for,
944–945
For Each statement with, 985–986
LBound and UBound functions for,
943–944
multidimensional, 946–948
Option Base statement for, 945–946
overview of, 941
as parameters to functions, 963–970
Redim Preserve statement for, 949, 950,
953–958
Redim statement for, 948–953
simple, 941–946
variants containing, 960–962
from worksheet, 969–970
Array formulas (Excel), with matrices,
833–838
Array function(s) (Excel), with matrices,
825–832
built-in, 825–829
for computing, 832
of compound annual return, 830–831
of par yields, 716
entry into spreadsheets of, 825
Frequency as, 828–829
homemade, 830–832
MMult and Minverse as, 828
overview of, 825
Transpose as, 825–827
Array of numbers, absolute value of,
326
ArrayAssign macro (VBA), 959–960
As (VBA), for function type, 895
Asian option(s)
examples of, 626f, 627f
Monte Carlo pricing of, 625–638
initial example of, 627–632
with more periods, 636–638
price paths in, 628–631
VBA program for, 633–638
payoff of, 613, 625
types of, 625
usefulness of, 625
Asset(s)
alpha of, 322
beta of, 318–320
in financial modeling, 136
Asset residual value, in lease analysis,
212–214
Asset returns, for value at risk, 403–404
Asset values, implicit puts and, 592–593
At the money option, 422
AutoSum button (Excel), 1094
Average abnormal return (AAR), 387, 389

Average function (Excel), for expected monthly returns, 241
Average periodic return, 258
Average strike options, 625

B
Babcock’s formula, for bond duration, 677
Backward pricing, of options, 453
Backward-looking estimate, 516
Balance sheet(s)
in bank valuation, 177–185
examples of, 180–185
model for, 177–180
projecting next year’s, 106–110
Balance sheet analysis, in financial modeling, 140–142
Bank(s), capital requirements for, 183
Bank valuation, 177–201
balance sheets in, 177–185
examples of, 180–185
model for, 177–180
capital adequacy ratios in, 194–196
free cash flow in, 177, 185–194
alternatives to, 194–201
in enterprise valuation model, 178
example of, 188–193
exchange ratio for, 193–194
model for, 185–188
P/E ratios in, 196–201
sensitivity analysis in, 192–193
Bargain-purchase option, 217
Barrier call option
knockin, 638–642, 644–646
knockout, 638–640, 642–644, 646
Barrier option(s)
Monte Carlo pricing of, 638–646
for knockin barrier call, 638–642, 644–646
for knockout barrier call, 638–640, 642–644, 646
simple example of, 638–640
VBA program for, 642–646
payoff of, 613, 638
Benchmark portfolios, 350–351, 357–360
in portfolio optimization, 357–360
Beta (β)
of assets, 318–320
of bonds, 737–739
as measure of risk, 92–95
of portfolio vs. individual stock, 92–95
in security market line, 158
as sensitivity of stock return to market return, 53–56, 56f, 58
Bingo card, 409–417

Binomial function (Excel), 459, 464
Binomial option-pricing model, 443–478
advantages of, 443
for American options, 455–458
convergence to Black-Scholes price of, 463–466
for employee stock options, 466–476
multi-period, 449–455
for nonstandard options, 476–478
state prices in, 445–448
vs. risk-neutral prices, 447–448
two-date example of, 443–445
VBA programming of, 458–463
Biotechnology project
phases of, 662
valuing of, 662–667
Black, Fisher, 350, 509
Black model, for bond option valuation, 541–544
Black-Litterman (BL) approach, to portfolio optimization, 349–368
assumptions in, 350–351
implementation with international portfolio of, 365–368
implied asset returns in, 351
naive approach vs., 351–356
Step 1 (benchmark portfolios) in, 357–360
Step 2 (investor opinions) in, 357, 360–364
variance-covariance matrix in, 355–356, 366–368
Black’s zero-beta capital asset pricing model, 265
Black-Scholes (BS) option-pricing model, 509–544
“bang for the buck” with, 539–541
for bond option valuation, 541–544
calculating implied volatility in, 513–517
central assumption of, 483
convergence of binomial pricing to, 463–466
dividend adjustments to, 520–524
for continuous payouts, 523–524
for known dividend payout before option expiration, 521–523
Greeks with. See **Greeks**
implementation in spreadsheet of, 510–513
Monte-Carlo pricing converges to, 618–619
overview of, 509–511
pricing puts in, 512
Index

for real options, 652–653
sigma of historical returns in, 513–516, 514f
for structured securities, 525–538
more complicated example of, 527–533, 530f
with reverse convertible, 533–538, 534f
simple example of, 525–526
VBA program for
to define Black-Scholes pricing function, 511–513
to find implied variance, 517–520
Bond(s)
accrued interest on, 731–732
beta of, 737–739
coupon rate of, 720
default-adjusted expected returns on, 719–740
accrued interest in, 731–732
calculation of payoff for, 728
computation for actual bond of, 730–734
computing beta for, 737–739
experimenting with example of, 728–730
in multiperiod framework, 722–726
numerical example of, 726–728
in one-period framework, 721–722
overview of, 719
payoff vector for, 726
promised return vs., 719
recovery percentage and, 721, 728–729
recovery rates for, 719, 733–734
transition matrix for, 722–726, 734–736
face value of, 695, 697, 719
immunization strategy(ies) for, 693–704
convexity in, 698–700
improving portfolio performance in, 700–704
limitations of, 694–695
numerical example of, 695–698
overview of, 693
simple model of, 693–695
term structure in, 694, 695
initial state of, 726
issued at par, 719
mispriced, 707–708
principal of, 719
promised return on, 719
prorated coupon of, 720
recovery percentage of, 721, 728–730
term structure of, 705–716
array function par yields for, 716
computing par yields from zero-coupon yield curve in, 715
description of data on, 710–713
in immunization strategy, 694, 695
initial example of, 705–708
Linest function (Excel) for, 709–710
overview of, 705
Treasury yield curve for, 713–714
for very short-term bonds, 708–709
term-structure risk for, 719
Bond duration, 671–689
Babcock’s formula for, 677
bond maturity and, 678–679
as convex combination of yields, 677
coupon effect on, 678
examples of, 671–674
Excel Duration formula for, 672–674
Macauley measure of, 671–674
meaning of, 674–677
nonflat term structures and, 687–689
overview of, 671
patterns of, 678–679
as price elasticity with respect to discount rate, 675–676
as time-weighted average of payments, 674–675
with uneven payments, 677, 679–686
uses of, 671
Bond maturity, effect on bond duration of, 678–679
Bond option valuation, Black model for, 541–544
Bond payments, time-weighted average of, 674–675
Bond payoff vector, 726
Bond portfolio
computation of, 702–704
improving performance of, 700–704
Bond price
elasticity with respect to discount rate of, 675–676
forward, 542–544
invoice, 720
market, 720
volatility of, 675–676
Bond ratings, 720, 722–723
Bond Screener (Yahoo), 712
Bond yield(s)
convex combination of, 677
to maturity, 706–707, 720
and immunization strategy, 697–698
with uneven payments, 682–686
Boolean functions, 819–821
Boolean operators, in VBA, 901–904
Bootstrapping
data production in, 408–409
Data/Sort function (Excel) for, 411
defined, 405–406, 409
Edit/Past Special/Values function (Excel) for, 411
Frequency function (Excel) for, 409
For loops (Excel) in, 408
to make bingo card, 409–417
probabilistic model for, 413
Rand() function for, 411, 417
Rank function (Excel) for, 416–417
return distributions for, 406–407
Sort function (Excel) for, 408–409, 412
for value at risk, 404–417
VBA program for, 413–416
BorderAround method (VBA), 978, 1020
Bottom-checking loops, 905
Box-Muller method, for random number
generation, 760–762
Browsers, 1030
BS option-pricing model. See Black-
Scholes (BS) option-pricing model.
BSCall function (VBA), 464
in Black-Scholes model, 511–512
in Monte Carlo option pricing, 622
BSMertonCall function (VBA), with
Greeks, 552, 558
BSMertonPut function (VBA), with
Greeks, 552
BSPut function (VBA), in Black-Scholes
model, 512
for abandonment option, 660
Bull spread, 432
Button, assigning macro to, 748
Call bang, in Black-Scholes model,
539–541
Call option(s), 421
at-the-money, out-of-the-money, and in-
the-money, 427
delta hedging of, 555–564
payoff patterns from, 423
purchased, 427
written, 428–429
profit patterns for, 427–429
Call option bounds, with known future
dividend, 421
Call option pricing, 510–511
Merton model for, 523–524
Call price(s), 428
convexity of, 437–438
higher lower bounds for, 433–434
Call purchaser, 428
Call writer, 428
CallOption function (VBA), 519
Callvalue (VBA), 624
CallVolatility function (VBA), 518–520
Capital, cost of. See Cost of capital.
Capital adequacy ratios, for bank
valuation, 194–196
Capital asset pricing model (CAPM),
317–332
Black’s zero-beta, 265
for bond beta, 738
for cost of equity, 39–40, 52–59
beta in, 53–56, 56f, 58, 158–159
for Cascade Corporation, 79
Excel’s data analysis add-in in, 57–59
for Kraft Corporation, 72
for PPG Corporation, 157–159
problems with, 83–86
TIntercept and TSlope functions in,
55–57
for Tyson Foods, 75–76
efficient portfolios and, 263–267
individual optimization vs. general
equilibrium in, 317–319
with no risk-free asset, 318–319
as prescriptive and descriptive tool, 319
with risk-free asset, 317–318
testing of, 319–332
absolute value of array of numbers in,
326
discussion of results of, 324–325
efficient market portfolio in, 327–329
excess returns in, 330–332
first-pass regression in, 320–322
nonefficiency of market portfolio in,
326–329
problems with results of, 323–324
second-pass regression in, 320, 322–323
security market line in, 317–319,
320–324
ture market portfolio in, 329–330
zero-beta model in, 318–319
uses of, 332
Capital market line (CML), 278–279, 317
Capital requirements, for banks, 183
CAPM. See Capital asset pricing model
(CAPM).
CAR (cumulative abnormal returns), 371,
374
examples of, 386–389, 393
Cash
in enterprise valuation, 116, 150
in financial modeling, 136
as plug in financial statement modeling, 106
Cash balances, negative, 118–121
Cash flows, 3
consolidated statement of, 113
free. See Free cash flows (FCF)
from leveraged leases
analysis of, 223–230
computation of, 222–223
Cash receipts, 3
Cell(s)
fast copy of, 841–842
Greek symbols in, 853–854
hidden, 857–859
multiline, 843–845
with text formulas, 844–845
named, 856–857
superscripts and subscripts in, 854–856
Cell errors, in Excel and VBA, 892–894
Cell variable (VBA), 987
Cells
property (VBA), 978, 1022–1023
Certainty-equivalence factor, 213–214
Chart titles, that update, 847–850
Circular references (Excel), 109–110
Client workbook, attaching reference to, 1002–1006
Clinical phase, of biotechnology project, 662
Closing line, for user-defined function, 869
CML (capital market line), 278–279, 317
Collar
gamma of
moderation of, 572–573
neutral, 571–572
hedging of, 564–574
delta, 567–570
Collection object(s) (VBA), 985–991
Count property of, 980
creation of, 985
For Each statement with, 986–988
Workbooks, 988–990
Worksheets, 990–991
Column function (Excel), 835
Column Input Cell (Excel), 767, 768
Column vector, 775
Combin function (Excel)
in binomial option-pricing model, 454, 459
for real options, 665
in VBA, 884–887
Comma separated values (CSV) files, for
Web queries, 1056–1058
Comparison operators, in VBA, 901–904
Compound annual return, computation of
continuous, 831
from 10 years of return data, 830–831
Compounding, continuous, 25–29
Compute function (VBA), 624
ComputePV function (VBA), 963–964
Computing, array functions for, 832
Concatenation, in VBA, 877–881
Conditional Formatting function (Excel), 315
Conditional functions (Excel), 815–816
Confidence, in opinions, 364
Confidence levels, for value at risk, 397, 399–402
Consolidated statement of cash flows, 113
Constant-correlation model, for variance-covariance matrix, 306–308, 312–313
Continuous compounding, 25–29
Continuous discounting, 27–28
Continuously compounded returns, 255–259
Control sequence, assigning macro to, 749
Convexity
of bond yields, 677
of call and put prices, 437–438
in immunization strategy, 698–700
Copy/Paste function (Excel), 1029–1035
Correl function (Excel), 807–808
for returns, 243
Correlation coefficient, of returns, 243–244
Cost of capital, 39–101
beta in, 53–56, 56f, 58
computation of, 70–81
for Cascade Corporation, 77–81
for Kraft Corporation, 70–73
for Tyson Foods, 73–77
cost of debt in, 40, 66–69
average, 66–68, 76
for Cascade Corporation, 80
for Kraft Corporation, 67–69
rating-adjusted yield in, 66, 68–69, 76
for Tyson Foods, 76
cost of equity in, 39–65
capital asset pricing model for, 39–40, 52–59
expected return on market for, 62–65
Gordon dividend model for, 39–52
security market line for, 59–62
in financial modeling, 160–161
formula for, 39
Internet data on, 95–101
matching state prices to, 657–659
overview of, 39–40
Cost of capital (cont.)
problems with models for, 81–86
uses of, 39
weighted average. See Weighted average
cost of capital (WACC)
Cost of debt, 40, 66–69
average, 66–68, 76
for Cascade Corporation, 80
in financial modeling, 159–160
for Kraft Corporation, 67–69
for PPG Corporation, 159–160
rating-adjusted yield in, 66, 68–69, 76
for Tyson Foods, 76
Cost of equity, 39–65
capital asset pricing model for, 39–40,
52–59
beta in, 53–56, 58, 158–159
for Cascade Corporation, 79
Excel’s data analysis add-in in, 57–59
for Kraft Corporation, 72
for PPG Corporation, 157–159
problems with, 83–86
T Intercept and **TSlope** functions in, 55–57
for Tyson Foods, 75–76
expected return on market for, 62–65
in financial modeling, 156–159
Gordon dividend model for, 39–52
accounting for all cash flows to equity
in, 44–47
application of, 43–44
for Cascade Corporation, 78–79
Euler’s formula in, 41–42
expected return on market in, 64–65
for Johnson & Johnson, 45–47
for Kraft Corporation, 70–72
for PPG Corporation, 156–157
problems with, 82–83
with supernormal growth, 48–52
for Tyson Foods, 74–75
for Wachovia Bank, 50–52
security market line for, 59–62, 157–159
Count function (Excel), 817
Boolean, 820
for Monte Carlo computation of π, 600
Count property (VBA), 980
CountA function (Excel), 817
CountIf function (Excel), 817–819
Boolean, 820–821
in event study, 385, 394–396
for Monte Carlo computation of π, 600
for stock prices and returns, 488
Coupon, effect on bond duration of, 678
Coupon rate, of bond, 720
Covar function (Excel), 296–298, 807–808
in capital asset pricing model, 56
for returns, 242
Covariance, of portfolio returns, 242–243,
262
CSV (comma separated values) files, for
Web queries, 1056–1058
Cumulative abnormal returns (CAR), 371,
374
examples of, 386–389, 393
CurrentRegion object (VBA), 987
Customize function, 922–926
CVErr function (VBA), 892
D
Data simulation, for value at risk, 404–417
Data table(s) (Excel), 765–770
as arrays, 770
building two-dimensional, 768
example of, 765–766
hiding formula cells in, 769–770
overview of, 765
setting up, 766–767
Data/Sort function (Excel), 411
Data/Table function (Excel), 766–768
in bank valuation, 192
in Black-Scholes model, 511, 518,
532–533
for computation of efficient portfolio,
302, 329–330
in immunization strategy, 698
in Monte Carlo pricing of Asian option,
637
for portfolio returns, 246
Date(s)
addition of, 798
calculating difference between two, 802
as labels, 1027
stretching out, 798
subtraction of, 797–798
translation into numbers of, 797
Date function (Excel), 796–802
for calculating difference between two
dates, 802
for stretching out dates, 798
in term structure, 713
for times in spreadsheet, 798–800
Date function (VBA), 990
Dated cash flows, discounting using,
30–31
Datedif function (Excel), 802
DateSerial function (VBA), 1091–1092
DateValue function (VBA), 1091
Day function (VBA), 1069, 1092
DCF (discounted cash flow), vs. real options, 649

DDuration function, 674, 681–682, 686, 696

Debt
cost of, 40, 66–69
average, 66–68, 76
for Cascade Corporation, 80
in financial modeling, 159–160
for Kraft Corporation, 67–69
for PPG Corporation, 159–160
rating-adjusted yield in, 66, 68–69, 76
for Tyson Foods, 76
in enterprise valuation, 150–151
as plug in financial statement modeling, 118–121
Debt repayment schedules, financial statement modeling for, 122–125
Debt/equity ratio, target, in pro forma, 121–122
Default risk, for bonds, 719
Default-adjusted expected returns, on bonds, 719–740
accrued interest in, 731–732
calculation of payoff for, 728
computation for actual bond of, 730–734
computation of bond beta for, 737–739
definition of terms for, 719–721
experimenting with example of, 728–730
in multiperiod framework, 722–726
numerical example of, 726–728
in one-period framework, 721–722
overview of, 719
payoff vector for, 726
promised return vs., 719
recovery percentage and, 721, 728–730
recovery rates for, 719, 733–734
transition matrix for, 722–726, 734–736
Deferred taxes, in financial modeling, 136, 163–167
Delta(s), in option pricing, 549, 551t, 556f
Delta hedging
of call, 555–564
of collar, 567–570
DeltaCall function (VBA), 552
DeltaPut function (VBA), 553
Depreciation, accelerated, 131–133, 163–167
Dim statement (VBA), 898, 941, 948
Discount factor, 27
Discount rate
price elasticity of bond with respect to, 675–676
risk-adjusted, 40
Discounted cash flow (DCF), vs. real options, 649
Discounting
continuous, 27–28
midyear, 116–117
using dated cash flows, 30–31
Discovery phase, of biotechnology project, 662
Discretely compounded returns, 255–259
Distribution function (VBA), 752
Dividend(s)
in financial modeling, 146, 151–156
Gordon model for, 39–52
accounting for all cash flows to equity in, 44–47
application of, 43–44
for Cascade Corporation, 78–79
Euler's formula in, 41–42
expected return on market in, 64–65
for Johnson & Johnson, 45–47
for Kellogg, 43–44
for Kraft Corporation, 70–72
for PPG Corporation, 156–157
problems with, 82–83
with supernormal growth, 48–52
for Tyson Foods, 74–75
for Wachovia Bank, 50–52
reason for paying, 153
reinvestment of, 256–257
Dividend adjustments
to Black-Scholes model, 520–524
for continuous payouts, 523–524
for known dividend payout before option expiration, 521–523
in portfolio models, 255–257
Do Until statement (VBA), 907–908
Do While statement (VBA), 905–906
Do . . . Loop Until statement (VBA), 908–909
Do . . . Loop While statement (VBA), 907
dOne function (VBA), 511–512, 551
Dot operator (VBA), 980
dTwo function (VBA), 511–512, 551–552
Duration, of bond, 671–689
Babcock's formula for, 677
bond maturity and, 678–679
as convex combination of yields, 677
coupon effect on, 678
examples of, 671–674
Excel **Duration** formula for, 672–674
Macauley measure of, 671–674
meaning of, 674–677
nonflat term structures and, 687–689
overview of, 671
Duration, of bond (cont.)
patterns of, 678–679
as price elasticity with respect to discount rate, 675–676
as time-weighted average of payments, 674–675
with uneven payments, 677, 679–686
uses of, 671
Duration function (Excel), 672–674, 676
Dynamic Web queries, 1035–1041

E
Earning announcements, and stock prices, 382–389
Earnings per share (EPS), in financial modeling, 153–155
EBITDA ratio, 115
Edit/Move function (Excel), 846
Edit/Paste function (Excel), 1031–1032
Edit/Paste Special function (Excel), 1033–1035
Edit/Paste Special/Values function (Excel), 411
Efficiency ratio, in bank valuation, 192
Efficient frontier
in capital asset pricing model, 318
for portfolios, 250
calculation of, 268–272
with capital market line, 278
defined, 262
with no short-sales restrictions, 268–272
with short-sales restrictions, 341–343
VBA program to create, 343–345
Efficient portfolio(s), 250–251, 262, 263
computation of, 250, 301–303
with no short-sales restrictions, 261–289
capital asset pricing model for, 263–267
capital market line for, 278–279
efficient frontier for, 268–272
notation for, 261–263
one-step calculation of, 276–277
optimization procedure for, 272–276
overview of, 261
proofs of statements for, 285–289
security market line for, 280–282
theorems on, 263–267
with short-sales restrictions, 335–347
constrained, 339–341
efficient frontier graph for, 341–343
numerical example of, 336–341
other position restrictions for, 345–346
unconstrained, 337–338
VBA program for, 343–345
Element variable (VBA), 985–986
Else clause (VBA), 879
Elseif clause (VBA), 879
Employee stock options (ESOs), 466
binomial option-pricing model for, 466–476
exercise prices of, 467
sensitivity analysis for, 473–475
valuation of, 468–469
VBA code for, 469–473
vesting period for, 467
End-of-year portfolio value
lognormal distribution for, 401–402
probability of, 398–399
Enterprise valuation model
for banks, 180–185
for nonfinancial company, 177–179
cash and marketable securities in, 116
free cash flow in, 113–115, 148–151
initial cash and debt in, 150–151
midyear discounting in, 116–117, 150
sensitivity analysis of, 117–118, 161–163
terminal value in, 114, 115, 118, 149–150, 163
Envelope portfolio(s), 262
and efficient frontier, 268–270
finding, 263–267
optimization procedure for, 272–276
security market line for, 265–266, 288
theorems for, 263–267
proof of, 286–288
EPS (earnings per share), in financial modeling, 153–155
Epsilon, for yield to maturity for uneven periods, 684
Equity, cost of. See Cost of equity.
Equity payout, total, in financial modeling, 153
Equity value, in bank valuation, 179
Equivalent-loan method, for lease analysis, 205–208
Error(s)
cell, in Excel and VBA, 892–894
in VBA, fixing of, 875–877
ESO(s). See Employee stock options (ESOs).
ESO function (Excel), 467–468, 473–475
Estimation window, 372–374
examples of, 376–378, 380, 392
Euler, Leonhard, 41
Euler’s formula, 41–42
European call, Monte Carlo pricing of, 615–625, 616f
convergence to Black-Scholes pricing of, 618–619
extension of two-period model of, 617–618
simple example of, 615–617, 616f
VBA program for, 619–624
European options, 422
binomial option-pricing model for, 449–455
European options, 422
binomial option-pricing model for, 449–455
Event, 372
Event study(ies), 371–396
abnormal returns in, 371, 374
examples of, 378–379, 386–389, 393
estimation window in, 372–374
examples of, 376–378, 380, 392
event in, 372
event window in, 372, 374
examples of, 376–380, 392
events of
fuller, 382–389
initial, 375–382
\texttt{Linest} function (Excel) in, 391–392
market-adjusted model for, 374–375
\texttt{Offset} function (Excel) in, 386–387, 394–396
outline of, 371–375
postevent window in, 372, 373
\texttt{Steyx} function (Excel) in, 378–379, 386, 394
time line of, 371–373
two-factor model for, 375, 390–394
Event window, 372, 374, 385
examples of, 376–380, 392
\textbf{EX Scatter Chart} (Excel), for term structure, 705–706
Excel
array formulas with matrices in, 833–838
cell errors in, 892–894
copy and paste of Web data into, 1029–1035
\texttt{Function Wizard} in, 872–875
names in, 1025–1027
references to external functions in, 997–999
Excel function(s), 789–823
array, 825–832
built-in, 825–829
for computing, 832
for computing of compound annual return, 830–831
for computing of par yields, 716
entry into spreadsheet of, 825
\texttt{Frequency} as, 828–829
homemade, 830–832
\texttt{MMult} and \texttt{MInverse} as, 828
overview of, 825
\texttt{Transpose} as, 825–827
Boolean, 819–821
conditional, 815–816
\texttt{Count}, \texttt{CountA}, and \texttt{CountIf} as, 817–819
date and time, 796–802
for calculating difference between two dates, 802
for stretching out dates, 798
for times in spreadsheet, 798–800
financial, 789–796
\texttt{IPMT} and \texttt{PPMT} as, 795–796
\texttt{IRR} as, 791–792
\texttt{NPV} as, 789–790
\texttt{PMT} as, 794–795
\texttt{PV} as, 792–793
\textbf{Large}, \textbf{Rank}, \textbf{Percentile}, and \textbf{Percentrank}
as, 816–817
\texttt{Offset} as, 821–823
overview of, 789
for regression(s), 808–814
\texttt{Index} as, 811
\texttt{Linest} as, 811–814
multiple, 813–814
statistical, 805–808
\texttt{Covar} and \texttt{Correl} as, 807–808
in VBA, 884–885
\texttt{XIRR} and \texttt{XNPV} as, 802–805
Excel object model, 1018–1019
Excel software
for annotating spreadsheets, 850–853
for chart titles that update, 847–850
for fast copy, 841–842
for formatting millions as thousands, 861–863
for formula auditing, 859–861
for hiding cells, 857–859
for multiline cells, 843–845
for named cells, 856–857
for putting Greek symbols in cells, 853–854
special features in, 841–863
for superscripts and subscripts, 854–856
text functions in, 847
for writing on multiple spreadsheets, 845–846
Excel VBA help files, extracts from, 1020–1027
Excess return(s)
in capital asset pricing model, 330–332
Exchange ratio, in bank valuation, 193–194, 200
Exercise price, of option, 421, 432

Expected monthly return, 241
Expected portfolio return, 262
Expected return on market, 62–65
Expiration date, of option, 421

External Data Range Properties (Excel), 1041

F
Face value, of bond, 695, 697, 719
Fast copy, Excel software for, 841–842
FCF. See Free cash flows (FCF).
Feasible portfolios, 262, 263, 285
Feasible set, 262
“Fill handle,” double clicking on, 841–842
Financial closure, 105
Financial function(s) (Excel), 789–796

IPMT and PMT as, 795–796
IRR as, 791–792
NPV as, 789–790
PMT as, 794–795
PV as, 792–793
Financial statement(s), pro forma, 103
Financial statement modeling, 103–133, 135–176
with accelerated depreciation, 131–133, 163–169
accounts payable and accrued expenses in, 136
balance sheet analysis in, 140–142
cash and short-term investments in, 136
cost of debt in, 159–160
cost of equity in, 156–159
depreciation, 191
for debt repayment schedules, 122–125
deferred taxes in, 136, 163–169
dividends in, 146, 151–156
earnings per share in, 153–155
example of, 135–176
extension to years 2 and beyond in, 110–111
free cash flows in, 111–115, 145
measuring, 111–112
with negative profits, 130–131
reconciling cash balances for, 113
for valuing firm, 113–115, 148–151
goodwill in, 169–176
intangibles in, 136, 169–176
minority interest in, 136, 176
other assets and other liabilities in, 136
overview of, 103
plug(s) in, 105–106
debt as, 118–121
treasury stock as, 143–145
profit and loss analysis in, 139–140
projecting next year’s balance sheet and income statement in, 106–110
return on equity in, 125–127
sales projections in, 138–139
target debt/equity ratio in, 121–122
theory and initial example of, 103–105
treasury stock in, 143, 146
valuation of firm in
cash and marketable securities in, 116
free cash flows in, 113–115, 148–151
initial cash and debt in, 150–151
midyear discounting in, 116–117, 150
sensitivity analysis of, 117–118, 161–163
terminal value in, 114, 115, 118, 149–150, 163
weighted average cost of capital in, 160–161
Finite annuity, present value of, 7–8
Firm, valuation of
cash and marketable securities in, 116
free cash flows in, 113–115, 148–151
initial cash and debt in, 150–151
midyear discounting in, 116–117, 150
sensitivity analysis of, 117–118, 161–163
terminal value in, 114, 115, 118, 149–150, 163
First-pass regression, 281
in testing of security market line, 320–322
Flat payment schedules, 17–19
Floor, of stock prices, 502, 503

For Each statement
with arrays, 985–986
with Collections, 986–988
For loops (Excel), in bootstrapping, 408
For loops (VBA), 910–913
for array assignment, 959–960
exiting early from, 912–913

Format Axis function (Excel), 27

Format Cells command (Excel), 769
for formatting millions as thousands, 861–863
for hiding cells, 857–859
for matrix inverses, 780

Format/Cells/Alignment function (Excel), 843–845

FormatDateTime function (VBA), 990
Formula auditing, 859–861

Formula Auditing function (Excel), 859–861
Formula cells, in data tables, 769–770
Formula property, of ActiveCell object, 976–977
Forward price, of bond, 542–544
Forward-looking estimate, 516
Free cash flows (FCF), 39, 111–112
in bank valuation, 177, 185–194
alternatives to, 194–201
in enterprise valuation model, 178
example of, 188–193
exchange ratio for, 193–194
model for, 185–188
in financial statement modeling, 111–115, 145
measuring, 111–112
with negative profits, 130–131
reconciling cash balances for, 113
for valuing firm, 113–115, 148–151
Frequency function (Excel), 828–829
for bootstrapping, 409
for random number generation, 749–750, 755
for stock prices and returns, 488, 496
Function(s)
arrays as parameters to, 963–970
Excel. See Excel function(s)
Function types, in VBA, 895–897
Function Wizard (Excel), 872–875
Future value (FV), 19–21
in pension problem, 21–25
FV function (Excel), 20–21
G
Gamma
of collar
moderation of, 572–573
neutral, 571–572
of hedge, neutral, 574
in option pricing, 549, 551t
Gamma function (VBA), 553
Gauss-Seidel method, 103, 785–787
Geometric diffusions, lognormal price
distributions and, 492–495
Geometric returns, 255–259
Geometric series, Euler’s formula for sum
of, 41–42
GetCF macro (VBA), 963–964
GetDates function (VBA), 1067–1069,
1073
GetDays function (VBA), 1074
GetFormula function (Excel), 850–853
GetPrices function (VBA), 99, 1059–1080
first approximation with, 1059–1061
penultimate approximation with,
1071–1076
second approximation with, 1061–1064
in “official” Microsoft way, 1064–1066
third approximation with, 1067–1071
using new worksheet for data from,
1076–1080
GetReturns function (VBA), 99,
1080–1085
GetTTS function (VBA), 1074
GetVolatility function (VBA), 99,
1085–1089
Global minimum variance portfolio
(GMVP), computation of, 299–301
using alternative variance-covariance
matrices, 310–315
Goal(s) (stock-linked securities), Black-
Scholes option-pricing model for, 533–
538, 534f
Goal Seek function (Excel), 10–11, 13, 23
in Black-Scholes model, 526
for highest acceptable lease rental, 659
in multiple-phases method, 231
for state prices, 659
Goodwill, in financial modeling, 169–176
Gordon dividend model, 39–52
accounting for all cash flows to equity in,
44–47
application of, 43–44
for Cascade Corporation, 78–79
Euler’s formula in, 41–42
expected return on market in, 64–65
for Johnson & Johnson, 45–47
for Kellogg, 43–44
for Kraft Corporation, 70–72
for PPG Corporation, 156–157
problems with, 82–83
with supernormal growth, 48–52
for Tyson Foods, 74–75
for Wachovia Bank, 50–52
Graph(s) (Excel), 26, 27
Graph titles, that update, 847–850
Greens, 549–550
in cells, 853–854
in option pricing, 549–575
call and put deltas as, 556f
call and put thetas as, 557f
computation of, 550–555, 551t
delta hedging of call as, 555–564
hedging of collar with, 564–574
stock price simulation with, 560–561
VBA program with, 551–554, 561–564
Growing finite annuity, present value of,
8–9
Growing infinite annuity, present value of,
9
Growth option, 649
Guess argument (Excel), 16
Head-and-shoulders pattern, of stock prices, 502, 503
Header line, for user-defined function, 869
Hedge
 gamma neutral, 574
 increasing frequency of, 572–573
Hedging
 of call, 555–564
 of collar, 564–574
Hidden cells, 857–859
Highest acceptable lease rental, 208–212
Historical returns, sigma of, in Black-Scholes model, 513–516, 514f
HLookup function (Excel), 815
HomeCombin function (VBA), 885–887
Hull-White model, 476
Hurdle rate, 39
Identity matrix, 779
If function (Excel), 815
 nested, 880–881
 in sample variance-covariance matrix, 312
 in single-index model, 305–306
If statement(s), 815
 adding value to function before introducing, 878–879
 to create matrix with ones on diagonal and zeros elsewhere, 835
 for default-adjusted expected bond returns, 727–728
 nested, 880–881
 one-line, 877–878
 in VBA functions, 877–881
If . . . ElseIf statements (VBA), 879–880
Ill-conditioned matrix, 781
Immunization strategy(ies), 693–704
 convexity in, 698–700
 improving portfolio performance in, 700–704
 limitations of, 694–695
 numerical example of, 695–698
 overview of, 693
 simple model of, 693–695
 term structure in, 694, 695
Implicit puts, portfolio insurance with, 592–593
Implied variance, in Black-Scholes model, 517–520
Implied volatility, in Black-Scholes model, 513–517, 514f, 532
Import External Data function (Excel), 1036, 1039, 1044–1046, 1053
In the money option, 422
Income statement, projecting next year’s, 106–108
Index boundaries, for arrays, 944–945
Index function (Excel)
 in capital asset pricing model, 57
 for regressions, 811
 for term structure, 710
Infinite annuity, present value of, 8
InputBox function (VBA), 930–932
Insert/Module function (VBA), 868
Insert/Trendline function (Excel), 809–810
Int function (VBA), 752
Intangibles, in financial modeling, 136, 169–176
Intercept function (Excel)
 in capital asset pricing model, 322
 in event study, 394, 396
 for regressions, 809
Interest payments, on leveraged leases, 223–224
Internal rate(s) of return (IRRs), 9–15, 791
 annualized, 30, 803
 daily, 804
Goal Seek function (Excel) for, 10–11, 13
Guess argument (Excel) for, 16
IRR function (Excel) for, 10, 14, 16
 on leveraged leases, 219, 225–230, 234
 loan tables and, 11–14
 multiple, 15–17
Rate function (Excel) for, 15
 trial and error determination of, 10–11
Internet data acquisition, 95–101, 1029–1094
 Adjusted Close for, 99
 with copy and paste, 1029–1035
 CSV files and postprocessing in, 1056–1058
 Download to Spreadsheet for, 1128–1129
 Edit/Paste for, 1031–1032
 Edit/Paste Special for, 1033–1035
 Excel VBA Help file for, 1090–1093
Finance link on Yahoo for, 96
Get Quotes box for, 96
GetPrices for, 99, 1059–1080
GetReturns for, 99, 1080–1085
GetVolatility for, 99, 1085–1089
Historical Prices for, 97–100
 igy file for, 1041–1046
Key Statistics for, 97–98
 overview of, 1029
parametric Web pages for, 1047–1049
R1C1 reference style for, 1093–1094
VBA application for, 1059–1089
Web queries for
dynamic, 1035–1041
parameters of, 1049–1056
running of, 1043–1046
Inverses, of matrices, 779–780
Investment(s)
Monte Carlo method for, 607–609
staged, 649
Investor opinions, in portfolio optimization, 357, 360–364
Invoice price, of bond, 720
IPMT function (Excel), 223–224, 795–796
IPY file, 1041–1043
running of, 1043–1046
IRR(s). See Internal rate(s) of return (IRRs).
IRR function (Excel), 10, 14, 16, 791–792
for default-adjusted expected bond returns, 727
for leveraged leases, 225
IsArray function (VBA), 970
IsDate function (VBA), 1069, 1090–1091
IsNumeric function (VBA), 1074, 1090
Iteration function (Excel), 109–110
in Gauss-Seidel method, 787
Iterative substitution, Gauss-Seidel method for, 103, 785–787
Kappa, in option pricing, 549, 551t
Keyboard shortcut, for macro, 921
Knockin barrier call option, 638–642, 644–646
Knockout barrier call option, 638–640, 642–644, 646
Labels
row and column, as names, 1026
stacked, 1027
use of, 1026–1027
using dates as, 1027
Large function (Excel), 816
LB (Lehman Brothers) Global Aggregate index, 365
LBound function (VBA), 943–944
Lease(s), 203
taxing and accounting treatment of,
true, 215–216
Lease analysis, 203–218
asset residual value in, 212–214
equivalent-loan method for, 205–208
highest acceptable lease rental in,
208–212
leveraged, 219–235
computing interest payments and principal repayments for, 223–224
example of, 220–223, 228–230
internal rate of return in, 219, 225–230, 234
multiple phases method for, 219, 230–234
net present value in, 219, 224–225
overview of, 203
simple example of, 203–205
tax and accounting treatment in, 215–218
Lease rental, highest acceptable, 208–212
Left function (VBA), 960
Lehman Brothers (LB) Global Aggregate index, 365
Len function (VBA), 960
Lessee, 203
Lessor, 203
Leveraged lease(s)
analysis of, 219–235
computing interest payments and principal repayments for, 223–224
example of, 220–223, 228–230
internal rate of return in, 219, 225–230, 234
multiple phases method for, 219, 230–234
net present value in, 219, 224–225
cash flows from analysis of, 223–230
computation of, 222–223
parties involved in, 219, 220f
Liabilities, in financial modeling, 136
Linear equations, solving systems of simultaneous
Gauss-Seidel method for, 785–787
matrices for, 781–782
Linear function (Excel), 810
Linest function (Excel)
in capital asset pricing model, 56–57
in event study, 391–392
for regressions, 811–814
for term structure, 709–710
Litterman, Robert, 350
Loan tables
calculation of, 794–795
and internal rate of return, 11–14
Loginv function (Excel), for value at risk, 400
Lognormal distribution, 483–505
appearance of, 495–498
in Black-Scholes pricing model, 483
calculation of parameters from stock
prices of, 503–505
computation of, 492–495
computing returns and their distribution
for continuous-return-generating
process and, 489–492
and geometric diffusions, 492–495
stock price paths and, 484–488
simulation of, 498–502
technical analysis of, 502–503
for value at risk, 401–402
Loop(s), in VBA, 904–913
For as, 910–913
bottom-checking, 905
Do Until statement as, 907–908
Do While statement as, 905–906
Do . . . Loop Until statement as, 908–909
Do . . . Loop While statement as, 907
top-checking, 905
While statement as, 909–910
M
Macauley duration measure, 671–674
Macro(s)
assignment to button or control sequence
of, 748–749
for providing help for user-defined
functions, 872–874
in VBA, 919–926
activation of, 919–921
attaching to toolbar of, 922–926
format for, 919
keyboard shortcut for, 921
for naming of range, 991–993
Marker function (Excel), in Gauss-Seidel
method, 787
Market portfolio, 266, 279
in capital asset pricing model
efficient, 327–329
nonefficiency of, 326–329
true, 329–330
finding, 278–279
Market price, of bond, 720
Market risk premium, 63–64
Market stage, of biotechnology project,
662
Market value, in bank valuation, 179
Marketable securities
in enterprise valuation, 116
as plug in financial statement modeling,
106
Market-adjusted model, for event study,
374–375
Markowitz, Harry, 349
MatchDestinationFormatting
function (Excel), 1031–1032
Mathematica, 735
Matrix(ices), 775–782
addition of, 776
array formulas with, 833–838
identity, 779
ill-conditioned, 781
inverses of, 779–781
multiplication of, 777–779
nonsingular, 781
off-diagonal elements of
finding maximum and minimum,
836–837
replacing, 837–838
with ones on diagonal and zeros
elsewhere, 835
operations on, 776–779
overview of, 775
portfolio calculations using, 246–249
scalar multiplication of, 776
solving systems of simultaneous linear
equations with, 781–782
square, 775, 780
subtraction of constant from, 833–834
symmetric, 775
terminology for, 775
transition, for default-adjusted expected
returns on bonds, 722–726, 734–736
transposition in, 777
variance-covariance. See Variance-
covariance matrix
MatrixPower function (VBA), 725, 728
Max function (Excel)
for barrier option pricing, 643
to find maximum off-diagonal elements
of matrix, 836–837
MC methods. See Monte Carlo (MC)
method(s).
MCAvian function (VBA), 633–635, 637
MCBasisBarrier function (VBA), 644–645
MCCBarrierOut function (VBA), 642–644
McCulloch_term_structure.xls, for
duration with nonflat term structure,
687
MDuration function (Excel), 672–674,
676
Mean, of portfolio, 245–249
Mean annual return, 259
Merton model, for option pricing, 523–524,
550
Methods, 977
 using objects, 977–979
Midyear discounting, in enterprise valuation, 116–117, 150
Millions, formatted as thousands, 861–863
Min function (Excel), 836–837
Minority interest, in financial modeling, 136, 176
MInverse function (Excel), 780, 828
 for efficient frontiers, 269
 for efficient portfolio, 277
Mistakes, in VBA, fixing of, 875–877
MMult function (Excel), 778–779, 828
 for default-adjusted expected bond returns, 723–724, 728
 for efficient frontiers, 269, 270
 for efficient portfolio, 277
 for matrix inverses, 780
 for matrix multiplication, 778–779, 828
 for portfolio models, 249
 for portfolio optimization, 367
 for variance-covariance matrix, 294–295, 296, 306
Modern portfolio theory (MPT), 349, 350
 Modules, in VBA, 932–935
 renaming of, 933–935
Monte Carlo (MC) method(s), 597–610
 computing pi (π) using, 597–602
 for investments, 607–609
 for option pricing, 613–646
 of Asian options, 625–638, 626f, 627f
 of barrier options, 638–646
 improving efficiency of, 622–624
 overview of, 613
 of plain-vanilla call, 615–625, 616f
 risk-neutral probabilities in, 617, 621, 623, 632
 state prices, probabilities, and risk neutrality in, 613–614, 615f
 VBA programs for, 619–624, 633–638, 642–646
 overview of, 597
 for retirement planning, 604–607
 VBA program for, 602–603, 607–609
MonteCarloTimer function (VBA), 603
Month function (Excel), 801
Month function (VBA), 1069, 1093
Monthly return, 240, 258
 expected, 241
Moody’s, bond ratings of, 720
MoreDynPV function (VBA), 963
Morgan Stanley Capital International (MSCI)
Emerging Markets index of, 365
World ex-US index of, 365
MPM (multiple phases method), for analysis of leveraged leases, 219, 230–234
MPT (modern portfolio theory), 349, 350
MsgBox function (VBA), 926–930
Multiline cells, 843–845
 with text formulas, 844–845
Multiperiod binomial model, for option pricing, 449–455
Multiple phases method (MPM), for analysis of leveraged leases, 219, 230–234
Multiple regressions, Excel functions for, 813–814
Multiplication, of matrices, 777–779
 scalar, 776
MyArray macro (VBA), 941–942
MyName (VBA), 993
N
Naive approach, to portfolio optimization, 351–356
Name(s)
 in Excel, 1025–1027
 in VBA, 991–995
 looking for, 993–994
 of project, 1001–1002
 of range, 991–993
 referring to, 994–995
Name Box feature (Excel), 142–143
Named cells, 856–857
Names (VBA), 993
Names Collection (VBA), 993
Negative profits, free cash flows with, 130–131
Nested If structures, 880–881
Net fixed assets/sales ratio, in financial modeling, 141–142
Net present value (NPV), 6–7
 of leveraged leases, 219, 224–225
NPV function (Excel) for, 5–9
 vs. real options, 649
for unevenly spaced cash flows, 804–805
XNPV function (Excel) for, 30–31
New Web Query (Excel), 1036–1037
NewDynPV function (VBA), 963
NewMistake function (Excel), 892
NewVarPV function (VBA), 969–970
Nonsingular matrix, 781
Nonstandard options, binomial option-pricing model for, 476–478
Normaldf function (VBA), with Greeks, 552

NormDist function (Excel), for value at risk, 399

Norminv function (Excel), for value at risk, 400–401

NormSDist function (Excel), in Black-Scholes model, 512

NormSInv function (Excel) for random number generation, 755–756

for retirement planning, 605

for value at risk, 400

NormStandardRandom program (VBA), 756–761

Now function (Excel), 801

NPV. See Net present value (NPV).

NPV function (Excel), 5–9, 789–790

in Gordon model, 49

potential problem with, 790

O

Object(s) (VBA), 975–991

accessing properties of, 975

ActiveCell, 975–979

Collection, 985–991

hierarchy of, 1018–1019

introduction to, 975–979

methods using, 977–979

as parameter to function, 979–982

properties of, 975–977

Range, 979–983

With statement and, 984–985

Object Browser (VBA), 995–997

Offset function (Excel), 821–823

for computation of variance-covariance matrix, 298–299

in event study, 386–387, 394–396

with negative values, 822–823

Offset property (VBA), 1023–1024

OLS (ordinarily least squares) regression coefficients, 809

Opinions, of investors, in portfolio optimization, 357, 360–364

Opportunity cost, 3

Optimal investment portfolio, 275–276

Option(s), 421–441

abandonment, 653–659

with equipment sale, 655–656

state prices with, 654, 656–659

value enhancement with, 655

valuing as series of puts of, 659–661

valuing of project for, 654

to alter operating scale, 649

American vs. European, 422

at-the-money, in-the-money, and out-of-the-money, 422, 427

average strike, 625

call, 421

at-the-money, out-of-the-money, and in-the-money, 427

delta hedging of, 555–564

payoff patterns from, 423, 427–429

profit patterns for, 427–429

to contract scale, 649

to defer or wait, 649

examples of, 424–425

exercise price of, 421

to expand, 649–653

expiration date of, 421

growth, 649

path-dependent, 613, 615f, 631

path-independent, 614, 615f

payoff and profit patterns for, 423, 426–430

strategies to change, 430–432

put, 421

lower bounds of, 435

payoff patterns from, 423, 429–430

portfolio insurance with implicit, 592–593

pricing of, 512

profit patterns for, 429–430

protective, 430–431

replication of, 577

valuing abandonment option as series of, 659–661

real, 649–667

abandonment option as, 653–659

Black-Scholes model for, 652–653

discounted cash flow vs., 649, 650

examples of, 649

option to expand as, 649–653

overview of, 649–650

for valuing of biotechnology project, 662–667

spreads for, 432

terminology for, 421–422

time-to-build, 649

writing vs. purchasing, 422–423, 428

Option arbitrage propositions, 432–439

Option Base statement (VBA), for arrays, 945–946

Option Explicit statement (VBA), 898–900

Option Greeks, 549–575

call and put deltas as, 556f

call and put thetas as, 557f

computation of, 550–555, 551t

defined, 549–550
delta hedging of call as, 555–564
hedging of collar with, 564–574
stock price simulation with, 560–561
VBA program with, 551–554, 561–564
Option price, 421
Option pricing
arbitrage restrictions of, 432–439
binomial model for, 443–478
advantages of, 443
for American options, 455–458
correlation to Black-Scholes price of, 463–466
for employee stock options, 466–476
multiperiod, 449–455
for nonstandard options, 476–478
state prices in, 445–448
two-date example of, 443–445
VBA programming of, 458–463
Black-Scholes model for, 509–544
“bang for the buck” with, 539–541
for bond option valuation, 541–544
calculating implied volatility in, 513–517, 532
central assumption of, 483
correlation of binomial pricing to, 463–466
dividend adjustments to, 520–524
implementation in spreadsheet of, 510–513
overview of, 509–511
pricing puts in, 512
sigma of historical returns in, 513–516, 514f
for structured securities, 525–538
VBA program for, 511–513, 517–520
Greens in, 549–575
call and put deltas as, 556f
call and put thetas as, 557f
computation of, 550–555, 551t
delta hedging of call as, 555–564
hedging of collar with, 564–574
stock price simulation with, 560–561
VBA program with, 551–554, 561–564
Merton model for, 523–524, 550
Monte Carlo method for, 613–646
of Asian options, 625–638, 626f, 627f
of barrier options, 638–646
improving efficiency of, 622–624
overview of, 613
of plain-vanilla call, 615–625, 616f
risk-neutral probabilities in, 617, 621, 623, 632
state prices, probabilities, and risk neutrality in, 613–614, 615f
VBA programs for, 619–624, 633–638, 642–646
Option strategies, 430–432
OptionReturnEnd (VBA), in binomial option-pricing model, 461
OptionReturnMiddle (VBA), in binomial option-pricing model, 461
OrDemo function (VBA), 903–904
Ordinary least squares (OLS) regression coefficients, 809
Out of the money option, 422
P
Par yields, 715
computation of, 715–716
Parameter(s), to functions, arrays as, 963–970
Parameter (VBA), 897
Parameter variables, 897–901
Parametric Web pages, 1047–1049
Parametric Web queries, 1049–1056
Path-dependent options, 613, 615f, 631
Path-independent options, 614, 615f
Payment schedules, flat, 17–19
Payoff patterns, for options, 423, 426–430
call, 427–429
put, 429–430
strategies to change, 430–432
Payoff vector, of bond, 726
P/E (price/earning) ratios, for bank valuation, 196–201
Pennants, of stock prices, 503
Pension problem, future value in, 21–25
Percentile function (Excel), 816, 817
PercentRank function (Excel), 816, 817
“Perfect” regression, 281–282
Pi (π)
Monte Carlo method for computing, 597–602
value of, 602n, 612
Plain-vanilla call, Monte Carlo pricing of, 615–625, 616f
correlation to Black-Scholes pricing of, 618–619
extension of two-period model of, 617–618
simple example of, 615–617, 616f
VBA program for, 619–624
Plug(s), in financial statement modeling, 105–106
debt as, 118–121
treasure stock as, 143
PMT function (Excel), 17, 794–795
Population standard deviation, 296
Population variance, 296
Portfolio(s)
benchmark, 350–351, 357–360
efficient. See Efficient portfolio(s)
envelope, 262
and efficient frontier, 268–270
finding, 263–267
optimization procedure for, 272–276
security market line for, 265–266, 288
theorems for, 263–267, 286–288
feasible, 262, 263, 285
global minimum variance, 299–301,
312–315
using alternative variance-covariance
matrices, 310–315
market, 266, 279
efficient, 327–329
finding, 278–279
inefficiency of, 326–329
ture, 329–330
means and variances of, 245–249
not efficient, 251
optimal investment, 275–276
rebalancing of, 582
of risky assets, 262
Sharpe ratio of, 337
zero-beta, 265–267
Portfolio insurance, 577–593
examples of, 577–578, 580–583
with implicit puts and asset values, 592–593
on more complicated assets, 578–580
overview of, 577–578
payoff pattern of, 431
properties of, 584–585
raising level of, 590–591
simulation of strategy for, 585–588
on total portfolio returns, 588–591
Portfolio models, 239–259
dividend adjustments in, 255–257
matrices in, 246–249
means and variances in, 245–249
overview of, 239
returns in, 239–244
continuously compounded vs. geometric, 255–259
correlation coefficient of, 243–244
covariance of, 242–243
Portfolio optimization, Black-Litterman
approach to, 349–368
assumptions in, 350–351
implementation with international
portfolio of, 365–368
implied asset returns in, 351
naive approach vs., 351–356
Step 1 (benchmark portfolios) in,
357–360
Step 2 (investor opinions) in, 357,
360–364
variance-covariance matrix in, 355–356,
366–368
Portfolio return(s), 239–244
continuously compounded vs. geometric, 255–259
correlation coefficient of, 243–244
covariance of, 242–243
expected, 262
variance of, 245–249
Portfolio return(s), 239–244
Position sizes, for value at risk, 403
Postevent window, 372, 373
Postprocessing, of Web queries, 1056–1058
PPMT function (Excel), 223–224, 795–796
PPUP (principal-protected, upside
potential) security, Black-Scholes
option-pricing model for, 525–526
Present value (PV), 5–9
of annuity, 7–9
computation of, 4, 5
net. See Net present value (NPV)
PV function (Excel) for, 5
Preserve statement (VBA), for arrays, 949,
950, 953–958
Price data, importing from Yahoo of,
1059–1089
GetPrices for, 1059–1080
GetReturns for, 1080–1085
GetVolatility for, 1085–1089
Price elasticity, 539
of bond with respect to discount rate, 675–676
Price paths, for Asian option, 628–631
Price volatility, of bond, 675–676
Price/earning (P/E) ratios, for bank
valuation, 196–201
PricePathSimulation function (Excel), 499–502
Pricing
by arbitrage, 445
capital asset. See Capital asset pricing
model (CAPM)
option. See Option pricing
Principal, of bond, 719
Principal repayments, on leveraged leases, 223–224
Principal-protected, upside potential
(PPUP) security, Black-Scholes option-
pricing model for, 525–526
Pro forma financial statements, 103
Probabilistic model, for value at risk, 413
Product function (Excel), for compound annual return, 831
Profit(s), free cash flows with negative, 130–131
Profit and loss analysis, in financial modeling, 139–140
Profit patterns, for options, 426–430
Project, naming of, 1001–1002
Project finance, financial statement modeling for, 122–125
Prorated coupon, of bond, 720
Protective put, 430–431, 578. See also Portfolio insurance.
Pseudo-random number generators, 745
Put bang, in Black-Scholes model, 540
Put option(s), 421
lower bounds of, 435
purchased, 429
written, 429–430
portfolio insurance with implicit, 592–593
pricing of, 512
profit patterns for, 429–430
replication of, 577
valuing abandonment option as series of, 659–661
Put price(s), convexity of, 438
Put writer, 429–430
Put-call parity, 431n, 436–437
in Black-Scholes model, 509–510
PV. See Present value (PV).
PV function (Excel), 5, 7, 792–793
PVCalculator macro (VBA), 930–932
Q
Quantiles, for value at risk, 397, 399–402
Quarter unit circle, in Monte Carlo computation of \(\pi \), 597–599
R
R1C1 reference style, 1082, 1093–1094
RADR (risk-adjusted discount rate), 3, 40
Ramanujan, Srinivasan, 612
Rand function (Excel)
for bootstrapping, 411, 417
for Monte Carlo method, 597–599, 601, 608
for option pricing, 617
for random number generation, 745–746, 749–750
Random number(s), 745
uniformly distributed, 745, 749–752
Random number generation, 745–762
normally distributed, 754–762
Box-Muller method for, 760–762
NormSInv function (Excel) for, 755–756
NormStandardRandom function (VBA) for, 756–761
Tools/Data Analysis/Random Number Generation function (Excel) for, 754–755
overview of, 745–746
pseudo-generators for, 745
Rand function (Excel) for, 745–746, 749–750
Rnd function (VBA) for, 747–749
testing of generators for, 749–753
Randomize function (VBA) for, 752–753
Random Number Generation function (Excel), 754–755
Randomize function (VBA), 752–753
RandomList macro, 748–749
Range name
macro for, 991–993
referring to, 994–995
Range (VBA), 979–983
Cells property of, 1022–1023
Excel help file on, 1020–1024
Offset property of, 1023–1024
as parameter to function, 979–982
Range property of, 983, 1021, 1023
Union method for, 1024
Value property of, 980
Variant type variables with, 980–982
Range property (VBA), 982–983, 1021, 1023
Rank function (Excel), 816–817
for bootstrapping, 416–417
Rate function (Excel), 15
Rating-adjusted yield, on debt, 66, 68–69, 76
R&D (research and development), valuing of, 662–667
Real option(s), 649–667
abandonment option as, 653–659
determining state prices with, 654, 656–659
with equipment sale, 655–656
value enhancement with, 655
valuing as series of puts of, 659–661
valuing of project for, 654
Black-Scholes model for, 652–653
discounted cash flow vs., 649, 650
examples of, 649
option to expand as, 649–653
Real option(s) (cont.)
overview of, 649–650
for valuing of biotechnology project, 662–667
Rebalancing, of portfolio, 582
Rebound levels, of stock prices, 503
Recovery percentage, of bond, 721, 728–730
Recovery rates, on defaulted bonds, 719, 733–734
Recursion, in VBA, 886
Recursive iteration, Gauss-Seidel method for, 103, 785–787
Redim Preserve statement (VBA), 949, 950, 953–958
Redim statement (VBA), 948–953
Reference
attaching to client workbook of, 1002–1006
R1C1 style of, 1082, 1093–1094
using function in, 1006–1008
Refresh Data (Excel), 1040–1041
Regression(s)
Excel function(s) for, 808–814
 Index as, 811
 Linest as, 811–814
 multiple, 813–814
first-pass, 281
“perfect,” 281–282
second-pass, 281–282
Reinvestment, of dividends, 256–257
Replication, of put option, 577
Research and development (R&D), valuing of, 662–667
Reserved words, in user-defined function, 869
Residual value, in lease analysis, 212–214
ResultRange (VBA), 1065
Retirement planning, Monte Carlo method for, 604–607
Retirement problem, future value in, 21–25
Return(s)
abnormal, 371, 374
average, 387, 389
cumulative, 371, 374, 386–389, 393
examples of, 378–379, 393
asset, for value at risk, 403–404
on bonds
default-adjusted expected. See Default-adjusted expected returns, on bonds promised, 719
compound annual, computation of, 830–831
excess
in capital asset pricing model, 330–332
matrix for, 292–294
internal rate of. See **Internal rate(s) of return (IRRs)**
on market, expected, 62–65
on portfolio, 239–244
annual, 258–259
average periodic, 258
continuously compounded vs. geometric, 255–259
correlation coefficient of, 243–244
covariance of, 242–243, 262
expected, 262
monthly, 240, 241, 258
variance of, 245–249, 262
Return on equity (ROE), in financial statement modeling, 125–127
Reverse convertible, Black-Scholes option-pricing model for, 533–538, 534f
Rho, in option pricing, 550, 551t
RhoCall function (VBA), 554
RhoPut function (VBA), 554
Right function (VBA), 960
Risk-adjusted discount rate (RA), 3, 40
Risk-free asset
capital asset pricing model with, 317–318
capital asset pricing model without, 318–319
Risk-neutral prices, state prices vs., 447–448, 613–614
Risk-neutral probabilities, in Monte Carlo simulation, 617, 621, 623, 632
Risky assets, portfolio of, 262
Rand function (VBA), for random number generation, 747–749
ROE (return on equity), in financial statement modeling, 125–127
Round function (Excel), in binomial option-pricing model, 462
Row function (Excel), to create matrix with ones on diagonal and zeros elsewhere, 835
Row Input Cell (Excel), 767, 768
Row vector, 275
Rsq function (Excel)
in capital asset pricing model, 55, 322
in event study, 394, 396
for regressions, 309
Runs variable (VBA), 619–621
Russell 2000 Index, 365
Russell 3000 Index, 365

S
Safety cushion, in retirement planning, 606
Sales projections, in financial modeling, 138–139
Sample standard deviation, 296
Sample variance, 296
Sample variance-covariance matrix
 computation of, 291–295
 alternative methods for, 297–299
 and global minimum variance portfolio,
 299–301, 310–312
Scalar multiplication, of matrix, 776
Scholes, Myron, 509
SecondDur function (VBA), in
 immunization strategy, 701
Second-pass regression, 281–282
 in testing of security market line, 320, 322–323
Security market line (SML), 317–319
 classic, 60–61, 158
 for computing bond beta, 737–738
 for cost of equity, 59–62, 157–159
 for envelope portfolios, 265–266, 288
 tax-adjusted, 61–62, 158
 testing of, 280–282, 320–324
Select Case statement (VBA), 882–883
Select method (VBA), 978
Selling, general, and administrative expenses (SG&A), 108
Sensitivity analysis
 in bank valuation, 192–193
 for employee stock option pricing,
 473–475
 on firm valuation, 117–118, 161–163
Serial values, 796
Set statement (VBA), 988
SG&A (selling, general, and administrative expenses), 108
Sharpe ratio, of portfolio, 337
Short sales
 efficient portfolio with no restrictions on,
 261–289
 capital asset pricing model for,
 263–267
 capital market line for, 278–279
 definitions and notation for, 261–263
 efficient frontier for, 268–272
 one-step calculation of, 276–277
 optimization procedure for, 272–276
 overview of, 261
 proofs of statements for, 285–289
 security market line for, 280–282
 theorems on, 263–267
 efficient portfolio with restrictions on,
 335–347
 constrained, 339–341
 efficient frontier graph for, 341–343
 numerical example of, 336–341
 other position restrictions for, 345–346
 unconstrained, 337–338
 VBA program for, 343–345
Short-term investment, in financial
 modeling, 136
Shoulders, of stock prices, 502, 503
Shrinkage methods, for variance-
 covariance matrix, 308–310, 313–314,
 355–356
SimpleIf function (Excel), 877–878
SimpleSelect function (VBA), 882–883
Single-index model (SIM), for variance-
 covariance matrix, 304–306, 312
Slope function (Excel)
 in capital asset pricing model, 55, 321–322
 in event study, 394, 396
 for expected monthly returns, 241
 for regressions, 809
 Smart tags, 1031–1032, 1034
SML. See Security market line (SML).
Solver function (Excel)
 in Black-Scholes model, 517, 526
 for efficient portfolio without short sales,
 337–340, 342, 344–347
 in future value problem, 23–24
 for hedging of collar, 565–566
 for highest acceptable lease rental,
 209–210
 in multiple-phases method, 231–233
 in portfolio insurance, 589–591
 in portfolio optimization, 363–364
 for real options, 665
 for state prices, 658
 for value at risk, 399–400
Sort function (Excel), for bootstrapping,
 408–409, 412
S&P (Standard and Poor) 500, 365
S&P (Standard and Poor) bond ratings,
 720
Spreads, 432
Spreadsheets
 annotation of, 850–853
 fast copy in, 841–842
 formatting millions as thousands on,
 861–863
Spreadsheets (cont.)
formula auditing on, 859–861
Greek symbols in, 853–854
hiding cells in, 857–859
implementation of Black-Scholes formulas in, 510–513
multiline cells in, 843–845
with text formulas, 844–845
multiple
moving, 846
writing on, 845–846
named cells in, 856–857
superscripts and subscripts in, 854–856
text functions in, 847
titles that update for, 847–850
Square matrix, 775, 780
Stacked labels, 1027
Staged investment, 649
Standard and Poor (S&P) 500, 365
bond ratings and, 720
Standard deviation, population vs. sample, 296

StartTime function (VBA), for Monte Carlo computation of π, 603
State prices, 445–448
with abandonment option, 654, 656–659
for biotechnology project, 664–665
in real-option approach, 460–461
vs. risk-neutral prices, 447–448, 613–614
Statistical functions, 805–808
Stdev function (Excel), 241, 296, 297, 806–807
Stdevp function (Excel), 241, 296, 297, 806–807
for expected monthly returns, 241
for stock price distribution, 504
Steyx function (Excel), in event study, 378–379, 386, 394
Stock(s)
in Black-Scholes model
historical returns of, 513–516, 514f
implied volatility of, 513–517, 514f, 532
payoff pattern from
purchased, 426
short sale, 426
profit patterns for, 426–427
Stock options, employee. See Employee stock options (ESOs).
Stock price(s), 421
calculating parameters of lognormal distribution from, 503–505
earning announcements and, 382–389
reasonable properties of, 484
simulation of, 560–561
takeover bid and, 375–382
technical analysis of, 502–503
Stock price paths, 484–488
simulation of, 498–502
Stock returns
computation for continuous-return-generating process of, 489–492
in portfolio models, 239–244
continuously compounded vs. geometric, 255–259
correlation coefficient of, 243–244
covariance of, 242–243
Stock-linked securities, Black-Scholes option-pricing model for, 533–538, 534f
StopTime function (VBA), for Monte Carlo computation of π, 603
Structured securities, Black-Scholes option-pricing model for, 525–538
more complicated example of, 527–533, 530f
with reverse convertible, 533–538, 534f
simple example of, 525–526
Sub function (VBA), 919
Subroutine(s), in VBA, 919–926
activation of, 919–921
attaching to toolbar of, 922–926
format for, 919
keyboard shortcut for, 921
Subscripts, in cells, 854–856
Successfulruns function (VBA), 607–609
Sum function (Excel), 832
SumProduct function (Excel)
for efficient frontiers, 270
for stock prices and returns, 488
for valuing of biotechnology project, 664
Supernormal growth, and Gordon model, 48–52
Superscripts, in cells, 854–856
Symmetric matrix, 775
Syntax errors, in VBA, 875
T
Takeover bid, and stock prices, 375–382
Taxes, deferred, in financial modeling, 136, 163–169
T-bill rate, in portfolio optimization, 352
Technical analysis, of stock prices, 502–503
Temp (VBA), 897–898
Term structure, 705–716
array function par yields for, 716
computing par yields from zero-coupon
yield curve in, 715
daily, 713, 714
description of data on, 710–713
in immunization strategy, 694, 695
initial example of, 705–708
Linest function (Excel) for, 709–710
overview of, 705
Treasury yield curve for, 713–714
for very short-term bonds, 708–709
zero-coupon, 714
Terminal value
in bank valuation, 178–179
in enterprise valuation, 114, 115, 118,
149–150, 163
Term-structure risk, for bonds, 719
Text formulas, multiline cells with, 844–845
Text function (Excel), 847
in event study, 394, 395–396
Text Import Wizard (Excel), 1034
Theta(s), in option pricing, 549–550, 551t,
557f
ThetaCall function (VBA), 553
ThetaPut function (VBA), 553–554
Thousands, formatting millions as, 861–863
Time function (Excel), 798–800
for calculating difference between two
dates, 802
for stretching out dates, 798
for times in spreadsheet, 798–800
Time function (VBA), 990
TimeFirst parameter, 674
Time-to-build option, 649
Time-weighted average, of bond payments,
674–675
TIntercept function (Excel), in capital
asset pricing model, 55–57
Title variable (VBA), 1069, 1075
Today function (Excel), 801
Toolbar, attaching macros to, 922–926
Tools/Add-ins function (Excel), 802–803
Tools/Data Analysis/Random Number
Generation function (Excel),
754–755
for portfolio insurance, 586
for stock price distribution, 494, 560, 561,
563
Tools/Data Analysis/Regression function
(Excel), in capital asset pricing model,
57–59
Tools/Formula Auditing function (Excel),
859–861
Tools/Goal Seek (Excel)
for highest acceptable lease rental,
208–210
for state prices, 659
Tools/Macro/Macros function (Excel),
872–874, 920–921
Tools/Macro/Record New Macro function
(VBA), with Greeks, 562
Tools/Macro/Visual Basic Editor function
(VBA), 867–868
Tools/Options/Calculation function
(Excel), for highest acceptable lease
rental, 210
Tools/Record Macro function (Excel), for
portfolio insurance, 587
Tools/References (Excel), 345
Tools/Solver (Excel), 339
in portfolio insurance, 593
for state prices, 658
Top-checking loops, 905
Total equity payout, in financial modeling,
153
Total portfolio returns, insurance on,
588–591
Transition matrix, for default-adjusted
expected returns on bonds, 722–726,
734–736
Transpose function (Excel), 825–827
for efficient frontiers, 270
for matrix transposition, 777
for portfolio models, 249
for portfolio optimization, 366–367
for variance-covariance matrix, 294–296,
306
Transposition, of matrices, 777
Treasury stock, in financial statement
modeling, 143, 146
Treasury yield curve, 713–714
Trendline function (Excel), 244
in capital asset pricing model, 56,
56f
TSlope function (Excel), in capital asset
pricing model, 55–57
Two-factor model, for event study, 375,
390–394
TwoStageGordon function (Excel),
51–52
Types, in VBA
function, 895–897
list of, 901
variable, 897–901
Typing errors, in VBA, 875–877
U
UBound function (VBA), 943–944
Uneven payments, bond duration with, 679–686
UnevenYTM function (Excel), 684–686
UniformRandom function (VBA), 750–752
Union method (VBA), 1024
Upcounter (VBA), 620, 623
Use Import Text Wizard (Excel), 1034
User input, in VBA, 930–932
User output, in VBA, 926–930
User-defined function(s) (VBA), 867–894
access to, 867
conditional execution (If statements) in, 877–881
Excel functions in, 884–885
fixing mistakes in, 875–877
function line in, 870
header and closing lines for, 869
module for, 868
obligatory elements of, 869
in other user-defined functions, 885–887
overview of, 867
parameter assignment in, 878–879
providing help in Function Wizard for, 872–875
reserved words in, 869
Select Case statement in, 882–883
using VBA editor to build, 867–872
V
Valuation
of bank (See Bank valuation)
of bond option, 541–544
of firm
cash and marketable securities in, 116
free cash flow in, 113–115, 148–151
initial cash and debt in, 150–151
midyear discounting in, 116–117, 150
sensitivity analysis of, 117–118, 161–163
terminal value in, 114, 115, 118, 149–150, 163
ValuBond (Yahoo), 710–711
Value at risk (VaR), 397–417
asset returns for, 403–404
bootstrapping for, 404–417
confidence levels (quantiles) for, 397, 399–402
lognormal distribution for, 401–402
NormDist function (Excel) for, 399
position sizes for, 403
simple example of, 397–399
in three-asset problem, 402–404
time period for, 397
variance-covariance matrix in, 402–404
Value property (VBA)
of ActiveCell object, 976–977
of Range object, 980
Value types, in VBA, 895–897
VanillaCall function (VBA), 619–622
VaR. See Value at risk (VaR).
Var function (Excel), 241, 296, 297, 806–807
VarArrayAssign macro (VBA), 962
VarCovar function (Excel), 298
Variable(s), in VBA, 897–901
Variable types, in VBA, 897–901
Variance
implied, in Black-Scholes model, 517–520
population vs. sample, 296
of portfolio returns, 245–249, 262
Variance-covariance matrix, 291–316
computation of
constant-correlation model for, 306–308, 312–313
dividing by M vs. $M-1$ in, 295–297
Offset function (Excel) for, 298–299
sample, 291–295
single-index model for, 304–306, 312
VBA function for, 297–298
in computation of efficient portfolio, 301–303
and global minimum variance portfolio, 299–301, 310–315
in portfolio models, 248
in portfolio optimization, 355–356, 366–368
for value at risk, 402–404
Variant type variables (VBA), 895, 900
containing arrays, 960–962
with Range object, 980–982
Varp function (Excel), 806–807
in capital asset pricing model, 56
for expected monthly returns, 241
for sample variance-covariance matrix, 296, 297
VarPV function (Excel), 969–970
VbAbort constant (VBA), 930
VbAbortRetryIgnore constant (VBA), 928
VbCancel constant (VBA), 930
VbCritical constant (VBA), 929
VbExclamation constant (VBA), 929
VbIgnore constant (VBA), 930
VbInformation constant (VBA), 930
VbNo constant (VBA), 930
VbOK constant (VBA), 930
VbOKCancel constant (VBA), 928
VbOKOnly constant (VBA), 928
VbQuestion constant (VBA), 929
VbRetry constant (VBA), 930
VbRetryCancel constant (VBA), 929
VbYes constant (VBA), 930
VbYesNo constant (VBA), 929
VbYesNoCancel constant (VBA), 928
Vega, in option pricing, 549, 551
Vega function (VBA), 553
Vesting period, for employee stock options, 467
View/Toolbars/Customize function (Excel), 922–926
Visual Basic Editor function (VBA), 867–868
Visual Basic for Applications (VBA) add-ins and integration in, 1008–1013
arrays in, 941–971
assignment of, 959–960
dynamic, 948–958
explicitly declared index boundaries for, 944–945
LBound and UBound functions for, 943–944
multidimensional, 946–948
Option Base statement for, 945–946
overview of, 941
as parameters to functions, 963–970
ReDim Preserve statement for, 949, 950, 953–958
ReDim statement for, 948–953
simple, 941–946
variants containing, 960–962
from worksheet, 969–970
attaching reference to client workbook in, 1002–1006
for binomial option-pricing model, 458–463
for employee stock options, 469–473
in Black-Scholes model, 511–513, 517–520
with Greeks, 551–554, 561–564
Boolean and comparison operators in, 901–904
cell errors in, 892–894
comments in code for, 887
for efficient frontier, 343–345
Excel help files for, 1020–1027
function use in reference in, 1006–1008
importing price data from Yahoo in, 1059–1089
GetPrices for, 1059–1080
GetReturns for, 1080–1085
GetVolatility for, 1085–1089
loop(s) in, 904–913
For as, 910–913
bottom-checking, 905
Do Until statement as, 907–908
Do While statement as, 905–906
Do . . . Loop Until statement as, 908–909
Do . . . Loop While statement as, 907
top-checking, 905
While statement as, 909–910
macro subroutines in, 919–926
activation of, 919–921
attaching to toolbar of, 922–926
format for, 919
keyboard shortcut for, 921
modules in, 932–935
for Monte Carlo method, 602–603, 607–609
for Asian option pricing, 633–638
for barrier option pricing, 642–646
for plain-vanilla call option pricing, 619–624
names in, 991–995
Object Browser in, 995–997
object(s) in, 975–991
accessing properties of, 975
ActiveCell, 975–979
Collection, 985–991
hierarchy of, 1018–1019
introduction to, 975–979
methods using, 977–979
as parameter to function, 979–982
properties of, 975–977
Range, 979–983
With statement and, 984–985
project naming in, 1001–1002
for random number generation, 747–751, 756–760
recursion in, 886
references to external functions in, 999–1008
for stock price distribution, 497–502
types in function, 895–897
list of, 901
variable, 897–901
user input and InputBox function in, 930–932
user output and MsgBox function in, 926–930
user-defined function(s) with, 867–894
access to, 867
Visual Basic for Applications (cont.)
 conditional execution (**If** statements) in, 877–881
 Excel functions in, 884–885
 fixing mistakes in, 875–877
 function line in, 870
 header and closing lines for, 869
 HomeCombin as, 885–887
 obligatory elements of, 869
 in other user-defined functions, 885–887
 overview of, 867
 parameter assignment in, 878–879
 providing help in Function Wizard for, 872–875
 reserved words in, 869
 Select Case statement in, 882–883
 using VBA editor to build, 867–872
 for value at risk, 413–416
 variables in, 897–901
 for variance-covariance matrix, 297–298
 for yield to maturity for uneven periods, 684–686
 VLookup function (Excel), 815–816
 for accelerated depreciation, 132
 Volatility, implied, in Black-Scholes model, 513–517, 514f, 532

W
WACC. See Weighted average cost of capital (WACC).
Weak efficient markets hypothesis, 503
Web browsers, 1030
Web data acquisition, 95–101, 1029–1094
 Adjusted Close for, 99
 with copy and paste, 1029–1035
 CSV files and postprocessing in, 1056–1058
 Download to Spreadsheet for, 1128–1129
 Edit/Paste for, 1031–1032
 Edit/Paste Special for, 1033–1035
 Excel VBA Help file for, 1090–1093
 Finance link on Yahoo for, 96
 Get Quotes box for, 96
 GetPrices for, 99, 1059–1080
 GetReturns for, 99, 1080–1085
 GetVolatility for, 99, 1085–1089
 Historical Prices for, 97, 98–100
 Key Statistics for, 97–98
 overview of, 1029
 parametric Web pages for, 1047–1049
 R1C1 reference style for, 1082, 1093–1094
 VBA application for, 1059–1089
 Web queries for
 dynamic, 1035–1041
 parameters for, 1049–1056
 running of, 1043–1046
 Web pages, parametric, 1047–1049
 Web queries, 1035
 CSV files and postprocessing of, 1056–1058
 dynamic, 1035–1041
 iqy file for, 1041–1043
 parametric, 1049–1056
 running of, 1043–1046
 Weekday function (Excel), 801
 Weighted average cost of capital (WACC), 3, 39–101
 in bank valuation, 177, 178, 192–193
 beta in, 92–95
 computation of, 70–81
 for Cascade Corporation, 77–81
 for Kraft Corporation, 70–73
 for PPG Corporation, 160–161
 for Tyson Foods, 73–77
 cost of debt in, 40, 66–69
 cost of equity in, 39–65
 capital asset pricing model for, 39–40, 52–59
 expected return on market for, 62–65
 Gordon dividend model for, 39–52
 security market line for, 59–62
 and enterprise value, 113–114
 in financial modeling, 160–161
 formula for, 39
 Internet data on, 95–101
 overview of, 39–40
 problems with models for, 81–86
 uses of, 39
 While statement (VBA), 909–910
 With statement (VBA), 984–985
 Word-wrap, 843–844
 Workbook object (VBA), 988–990
 Workbooks Collection (VBA), 988–990
 Worksheet arrays, 969–970
 Worksheet object (VBA), 990–991
 Worksheets Collection (VBA), 990–991
 Wrap text function (Excel), 843, 845

X
XIRR function (Excel), 30, 802–804
 in Black-Scholes model, 538
 for default-adjusted expected bond returns, 731
 for yield to maturity for uneven periods, 682–684
XNPV function (Excel), 30, 802, 804–805
for yield to maturity for uneven periods, 684

XY Scatter Plot function (Excel), 809–810

Y
Yahoo
getting data from, 95–101
importing price data from, 1059–1089
GetPrices for, 1059–1080
GetReturns for, 1080–1085
GetVolatility for, 1085–1089
Year function (VBA), 1069, 1093
Yield curve, 706–707
computing par yields from zero-coupon, 715
of Treasury, 713–714
Yield function (Excel), for term structure, 712–713
Yield to maturity (YTM), of bond, 706–707, 720
and immunization strategy, 697–698
with uneven payments, 682–686

Z
Zero-beta capital asset pricing model, 318–319
Zero-beta portfolios, 265–267
Zero-coupon term structures, 714
Zero-coupon yield curve, computing par yields from, 715